導航:首頁 > 金融投資 > 互聯網金融大數據中掘金當趁早

互聯網金融大數據中掘金當趁早

發布時間:2021-07-09 05:37:15

① 如何利用大數據做金融風控

大數據能夠進行數據變現的商業模式目前就是兩個,一個是精準營銷,典型的場景是商品推薦和精準廣告投放,另外一個是大數據風控,典型的場景是互聯網金融的大數據風控。

金融的本質是風險管理,風控是所有金融業務的核心。典型的金融借貸業務例如抵押貸款、消費貸款、P2P、供應鏈金融、以及票據融資都需要數據風控識別欺詐用戶及評估用戶信用等級。

傳統金融的風控主要利用了信用屬性強大的金融數據,一般採用20個緯度左右的數據,利用評分來識別客戶的還款能力和還款意願。信用相關程度強的數據 緯度為十個左右,包含年齡、職業、收入、學歷、工作單位、借貸情況、房產,汽車、單位、還貸記錄等,金融企業參考用戶提交的數據進行打分,最後得到申請人 的信用評分,依據評分來決定是否貸款以及貸款額度。其他同信用相關的數據還有區域、產品、理財方式、行業、繳款方式、繳款記錄、金額、時間、頻率等。普惠在線

互聯網金融的大數據風控並不是完全改變傳統風控,實際是豐富傳統風控的數據緯度。互聯網風控中,首先還是利用信用屬性強的金融數據,判斷借款人的還 款能力和還款意願,然後在利用信用屬性較弱的行為數據進行補充,一般是利用數據的關聯分析來判斷借款人的信用情況,藉助數據模型來揭示某些行為特徵和信用 風險之間的關系。

互聯網金融公司利用大數據進行風控時,都是利用多維度數據來識別借款人風險。同信用相關的數據越多地被用於借款人風險評估,借款人的信用風險就被揭示的更充分,信用評分就會更加客觀,接近借款人實際風險。

常用的互聯網金融大數據風控方式有以下幾種:

驗證借款人身份
驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以藉助國政通的數據來驗證姓名、身份證號,藉助銀聯數據來驗證銀行卡號和姓名,利用運營商數據來驗證手機號、姓名、身份證號、家庭住址。

如果借款人是欺詐用戶,這五個信息都可以買到。這個時候就需要進行人臉識別了,人臉識別等原理是調用國政通/公安局 API介面,將申請人實時拍攝的照片/視頻同客戶預留在公安的身份證進行識別,通過人臉識別技術驗證申請人是否是借款人本人。

其他的驗證客戶的方式包括讓客戶出示其他銀行的信用卡及刷卡記錄,或者驗證客戶的學歷證書和身份認證。
分析提交的信息來識別欺詐

大部分的貸款申請都從線下移到了線上,特別是在互聯網金融領域,消費貸和學生貸都是以線上申請為主的。
線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往 往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相 同、單位名稱相同、甚至居住的樓層和號碼都相同。還有一些填寫假的小區、地址和單位名稱以及電話等。

如果企業發現一些重復的信息和電話號碼,申請人欺詐的可能性就會很高。

分析客戶線上申請行為來識別欺詐

欺詐用戶往往事先准備好用戶基本信息,在申請過程中,快速進行填寫,批量作業,在多家網站進行申請,通過提高申請量來獲得更多的貸款。

企業可以藉助於SDK或JS來採集申請人在各個環節的行為,計算客戶閱讀條款的時間,填寫信息的時間,申請貸款的時間等,如果這些申請時間大大小於 正常客戶申請時間,例如填寫地址信息小於2秒,閱讀條款少於3秒鍾,申請貸款低於20秒等。用戶申請的時間也很關鍵,一般晚上11點以後申請貸款的申請 人,欺詐比例和違約比例較高。

這些異常申請行為可能揭示申請人具有欺詐傾向,企業可以結合其他的信息來判斷客戶是否為欺詐用戶。
利用黑名單和灰名單識別風險

互聯網金融公司面臨的主要風險為惡意欺詐,70%左右的信貸損失來源於申請人的惡意欺詐。客戶逾期或者違約貸款中至少有30%左右可以收回,另外的一些可以通過催收公司進行催收,M2逾期的回收率在20%左右。

市場上有近百家的公司從事個人徵信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶徵信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。

黑名單來源於民間借貸、線上P2P、信用卡公司、小額借貸等公司的歷史違約用戶,其中很大一部分不再有借貸行為,參考價值有限。另外一個主要來源是催收公司,催收的成功率一般小於於30%(M3以上的),會產生很多黑名單。

灰名單是逾期但是還沒有達到違約的客戶(逾期少於3個月的客戶),灰名單也還意味著多頭借貸,申請人在多個貸款平台進行借貸。總借款數目遠遠超過其還款能力。

黑名單和灰名單是很好的風控方式,但是各個徵信公司所擁有的名單僅僅是市場總量的一部分,很多互聯網金融公司不得不接入多個風控公司,來獲得更多的 黑名單來提高查得率。央行和上海經信委正在聯合多家互聯網金融公司建立統一的黑名單平台,但是很多互聯網金融公司都不太願意貢獻自家的黑名單,這些黑名單 是用真金白銀換來的教訓。另外如果讓外界知道了自家平台黑名單的數量,會影響其公司聲譽,降低公司估值,並令投資者質疑其平台的風控水平。

利用移動設備數據識別欺詐
行為數據中一個比較特殊的就是移動設備數據反欺詐,公司可以利用移動設備的位置信息來驗證客戶提交的工作地和生活地是否真實,另外來可以根據設備安裝的應用活躍來識別多頭借貸風險。

欺詐用戶一般會使用模擬器進行貸款申請,移動大數據可以識別出貸款人是否使用模擬器。欺詐用戶也有一些典型特徵,例如很多設備聚集在一個區域,一起 申請貸款。欺詐設備不安裝生活和工具用App,僅僅安裝和貸款有關的App,可能還安裝了一些密碼破譯軟體或者其他的惡意軟體。

欺詐用戶還有可能不停更換SIM卡和手機,利用SIM卡和手機綁定時間和頻次可以識別出部分欺詐用戶。另外欺詐用戶也會購買一些已經淘汰的手機,其機器上面的操作系統已經過時很久,所安裝的App版本都很舊。這些特徵可以識別出一些欺詐用戶。

利用消費記錄來進行評分

大會數據風控除了可以識別出壞人,還可以評估貸款人的還款能力。過去傳統金融依據借款人的收入來判斷其還款能力,但是有些客戶擁有工資以外的收入,例如投資收入、顧問咨詢收入等。另外一些客戶可能從父母、伴侶、朋友那裡獲得其他的財政支持,擁有較高的支付能力。

按照傳統金融的做法,在家不工作照顧家庭的主婦可能還款能力較弱。無法給其提供貸款,但是其丈夫收入很高,家庭日常支出由其太太做主。這種情況,就需要消費數據來證明其還款能力了。

常用的消費記錄由銀行卡消費、電商購物、公共事業費記錄、大宗商品消費等。還可以參考航空記錄、手機話費、特殊會員消費等方式。例如頭等艙乘坐次數,物業費高低、高爾夫球俱樂部消費,遊艇俱樂部會員費用,奢侈品會員,豪車4S店消費記錄等消費數據可以作為其信用評分重要參考。

互聯網金融的主要客戶是屌絲,其電商消費記錄、旅遊消費記錄、以及加油消費記錄都可以作為評估其信用的依據。有的互聯金融公司專門從事個人電商消費數據分析,只要客戶授權其登陸電商網站,其可以藉助於工具將客戶歷史消費數據全部抓取並進行匯總和評分。

參考社會關系來評估信用情況

物以類聚,人與群分。一般情況下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,

參考借款人常聯系的朋友信用評分可以評價借款人的信用情況,一般會採用經常打電話的朋友作為樣本,評估經常聯系的幾個人(不超過6六個人)的信用評分,去掉一個最高分,去掉一個最低分,取其中的平均值來判斷借款人的信用。這種方式挑戰很大,只是依靠手機號碼來判斷個人信用可信度不高。一般僅僅用於反欺詐識別,利用其經常通話的手機號在黑名單庫裡面進行匹配,如果命中,則此申請人的風險較高,需要進一步進行調查。

參考借款人社會屬性和行為來評估信用

參考過去互聯網金融風控的經驗發現,擁有伴侶和子女的借款人,其貸款違約率較低;年齡大的人比年齡低的人貸款違約率要高,其中50歲左右的貸款人違 約率最高,30歲左右的人違約率最低。貸款用於家庭消費和教育的貸款人,其貸款違約率低;聲明月收入超過3萬的人比聲明月收入低於1萬5千的人貸款違約率 高;貸款次數多的人,其貸款違約率低於第一次貸款的人。

經常不交公共事業費和物業費的人,其貸款違約率較高。經常換工作,收入不穩定的人貸款違約率較高。經常參加社會公益活動的人,成為各種組織會員的人,其貸款違約率低。經常更換手機號碼的人貸款違約率比一直使用一個電話號碼的人高很多。

午夜經常上網,很晚發微博,生活不規律,經常在各個城市跑的申請人,其帶貸款違約率比其他人高30%。刻意隱瞞自己過去經歷和聯系方式,填寫簡單信 息的人,比信息填寫豐富的人違約概率高20%。借款時間長的人比借款時間短短人,逾期和違約概率高20%左右。擁有汽車的貸款人比沒有汽車的貸款人,貸款 違約率低10%左右。

利用司法信息評估風險

涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。

尋找這些涉毒涉賭的嫌疑人,可以利用當地的公安數據,但是難度較大。也可以採用移動設備的位置信息來進行一定程度的識別。如果設備經常在半夜出現在 賭博場所或賭博區域例如澳門,其申請人涉賭的風險就較高。另外中國有些特定的地區,當地的有一部分人群從事涉賭或涉賭行業,一旦申請人填寫的居住地址或者 移動設備位置信息涉及這些區域,也要引起重視。涉賭和涉毒的人員工作一般也不太穩定或者沒有固定工作收入,如果申請人經常換工作或者經常在某一個階段沒有 收入,這種情況需要引起重視。涉賭和涉毒的人活動規律比較特殊,經常半夜在外面活動,另外也經常住本地賓館,這些信息都可以參考移動大數據進行識別。

總之,互聯網金融的大數據風控採用了用戶社會行為和社會屬性數據,在一定程度上補充了傳統風控數據維度不足的缺點,能夠更加全面識別出欺詐客戶,評價客戶的風險水平。互聯網金融企業通過分析申請人的社會行為數據來控制信用風險,將資金借給合格貸款人,保證資金的安全。

② 互聯網創業者如何掘金大數據

近年來,在國家政策支持和各方面的共同努力下,我國大數據產業迅速發展,應用不斷深化,形勢喜人。國際數據公司(IDC)預計,未來全球數據總量增長率將維持50%左右,到2020年全球數據總量將達到40ZB,其中,我國將達到8.6ZB,佔全球的21%。

據前瞻產業研究院發布的《大數據產業發展前景與投資戰略規劃分析報告》統計數據顯示,2017年中國大數據產業市場規模達到4700億元,同比增長30.6%。預計到2018年中國大數據產業市場規模將達到6200億元,未來五年(2018-2022)年均復合增長率約為25.13%,2022年中國大數據產業市場規模將達到15200億元。

目前我國大數據產業也面臨很多挑戰,首先技術創新與支撐能力還有欠缺,在新型計算平台、分布式計算架構、大數據處理、分析和呈現方面與國外仍存在著較大的差距,對開元技術和相關生態系統的影響力還比較弱;其次,大數據支撐體系不完善,數據所有權、信息安全、開放共享等相關法律法規標准規范尚不健全,尚未建立起安全發展的數據開放管理的體系;最好,人才隊伍建設急需加強,既熟悉業務需求又可以進行管理的大數據綜合人在還很缺乏,遠不能滿足發展的需要。

③ 互聯網金融模式的大數據金融

大數據金融是指依託於海量、非結構化的數據,通過互聯網、雲計算等信息化方式回對其數據進行專業答化的挖掘和分析,並與傳統金融服務相結合,創新性開展相關資金融通工作的統稱。大數據金融擴充了金融業的企業種類,不再是傳統金融獨大,並創新了金融產品和服務,擴大了客戶范圍,降低了企業成本。大數據金融按照平台運營模式,可分為平台金融和供應鏈金融兩大模式。兩種模式代表企業分別為阿里金融和京東金融。

④ 互聯網金融大數據風控到底怎麼玩

互聯網金融是指以依託於支付、雲計算、社交網路已及搜索引擎等互聯網工具,實現資金融通、支付和信息中介等業務的一種新興金融。做好互聯網金融,要立足於三個基本點:平台、數據、金融。而在這其中,大數據,作為連接平台、用戶、金融等方面的工具,有著舉足輕重的意義。
由於互聯網金融涉及廣泛、囊括多個領域,各領域的風控策略也不盡相同,不能一概而論,下面就大數據風控在互聯網金融領域的運用做一個大致的分類和解析。

首先,如何理解大數據風控
大數據風控的有效性除了強調數據的海量外,更重要的在於用於風控的數據的廣度和深度。其中:
數據的廣度:指用於風控的數據源多樣化,任何互聯網金融企業並不能指望依據單一的海量數據就解決風控問題,正如在傳統金融風控中強調的「交叉驗證」的原則一樣,應當通過多樣化的數據來交叉驗證風險模型。互聯網金融的風控策略也如此,可能對同一風險事件採用了多種策略。
數據的深度:指用於風控的數據應當基於某個垂直領域真實業務場景及過程完整記錄,從而保證數據能夠還原真實的業務過程邏輯。例如,很多第三方支付平台有豐富的真實交易記錄,但由於大部分場景下無法獲取交易商品的詳細信息及用戶身份,在用於風控時候價值大打折扣,因而數據的完整性和垂直深度很重要。

互聯網金融產品如何利用大數據做風控,大致有以下一些分類和方向:
1、基於某類特定目標人群、特定行業、商圈等做風控。由於針對特定人員、行業、商圈等垂直目標做深耕,較為容易建對應的風險點及風控策略。
例如: 針對大學生的消費貸,主要針對大學生人群的特徵
針對農業機具行業的融資擔保。
針對批發市場商圈的信貸。

2、基於自有平台身份數據、歷史交易數據、支付數據、信用數據、行為數據、黑名單/白名單等數據做風控。
>>>>身份數據:實名認證信息(姓名、身份證號、手機號、銀行卡、單位、職位)、行業、家庭住址、單位地址、關系圈等等。
>>>>交易數據/支付數據:例如B2C/B2B/C2C電商平台的交易數據,P2P平台的借款、投資的交易數據等。
>>>>信用數據:例如P2P平台借款、還款等行為累積形成的信用數據,電商平台根據交易行為形成的信用數據及信用分(京東白條、支付寶花唄),SNS平台的信用數據。
>>>>行為數據:例如電商的購買行為、互動行為、實名認證行為(例如類似新浪微博單位認證及好友認證)、修改資料(例如修改家庭及單位住址,通過更換頻率來確認職業穩定性)。
>>>>黑名單/白名單:信用卡黑名單、賬戶白名單等。

3、基於第三方平台服務及數據做風控 互聯網徵信平台(非人行徵信)、行業聯盟共享數據(例如小貸聯盟、P2P聯盟) FICO服務、Retail Decisions(ReD)、Maxmind服務。

>>>>IP地址庫、代理伺服器、盜卡/偽卡資料庫、惡意網址庫等;
>>>>輿情監控及趨勢、口碑服務。諸如宏觀政策、行業趨勢及個體案例的分析等等

4、基於傳統行業數據做風控 人行徵信、工商、稅務、房管、法院、公安、金融機構、車管所、電信、公共事業(水電煤)等傳統行業數據。

5、線下實地盡職調查數據
包括自建風控團隊做線下盡職調查模式以及與小貸公司、典當、第三方信用管理公司等傳統線下企業合作做風控的模式。線下風控數據也是大數據風控的重要數據來源和手段。


希望能幫助到你,如想了解更多,可以關注微信號「大數據風控圈"哦~,很多互聯網行業資訊分享。

⑤ 大數據掘金之中的數據分析方法不哪些

數據挖掘最常見的十種方法:
1、基於歷史的MBR分析(Memory-Based Reasoning;MBR)
基於歷史的MBR分析方法最主要的概念是用已知的案例(case)來預測未來案例的一些屬性(attribute),通常找尋最相似的案例來做比較。
2、購物籃分析(Market Basket Analysis)
購物籃分析最主要的目的在於找出什麼樣的東西應該放在一起?商業上的應用在藉由顧客的購買行為來了解是什麼樣的顧客以及這些顧客為什麼買這些產品,找出相 關的聯想(association)規則,企業藉由這些規則的挖掘獲得利益與建立競爭優勢。舉例來說,零售店可藉由此分析改變置物架上的商品排列或是設計 吸引客戶的商業套餐等等。
3、決策樹(Decision Trees)
決策樹在解決歸類與預測上有著極強的能力,它以法則的方式表達,而這些法則則以一連串的問題表示出來,經由不斷詢問問題最終能導出所需的結果。典型的決策 樹頂端是一個樹根,底部有許多的樹葉,它將紀錄分解成不同的子集,每個子集中的欄位可能都包含一個簡單的法則。此外,決策樹可能有著不同的外型,例如二元 樹、三元樹或混和的決策樹型態。
4、遺傳演算法(Genetic Algorithm)
遺傳演算法學習細胞演化的過程,細胞間可經由不斷的選擇、復制、交配、突變產生更佳的新細胞。基因演算法的運作方式也很類似,它必須預先建立好一個模式,再經 由一連串類似產生新細胞過程的運作,利用適合函數(fitness function)決定所產生的後代是否與這個模式吻合,最後僅有最吻合的結果能夠存活,這個程序一直運作直到此函數收斂到最佳解。基因演算法在群集 (cluster)問題上有不錯的表現,一般可用來輔助記憶基礎推理法與類神經網路的應用。
5、聚類分析(Cluster Detection)
這個技術涵蓋范圍相當廣泛,包含基因演算法、類神經網路、統計學中的群集分析都有這個功能。它的目標為找出數據中以前未知的相似群體,在許許多多的分析中,剛開始都運用到群集偵測技術,以作為研究的開端。
6、連接分析(Link Analysis)
連接分析是以數學中之圖形理論(graph theory)為基礎,藉由記錄之間的關系發展出一個模式,它是以關系為主體,由人與人、物與物或是人與物的關系發展出相當多的應用。例如電信服務業可藉 連結分析收集到顧客使用電話的時間與頻率,進而推斷顧客使用偏好為何,提出有利於公司的方案。除了電信業之外,愈來愈多的營銷業者亦利用連結分析做有利於 企業的研究。
7、OLAP分析(On-Line Analytic Processing;OLAP)
嚴格說起來,OLAP分析並不算特別的一個數據挖掘技術,但是透過在線分析處理工具,使用者能更清楚的了解數據所隱藏的潛在意涵。如同一些視覺處理技術一般,透過圖表或圖形等方式顯現,對一般人而言,感覺會更友善。這樣的工具亦能輔助將數據轉變成信息的目標。
8、神經網路(Neural Networks)
神經網路是以重復學習的方法,將一串例子交與學習,使其歸納出一足以區分的樣式。若面對新的例證,神經網路即可根據其過去學習的成果歸納後,推導出新的結果,乃屬於機器學習的一種。數據挖掘的相關問題也可采類神經學習的方式,其學習效果十分正確並可做預測功能。
9、判別分析(Discriminant Analysis)
當所遭遇問題它的因變數為定性(categorical),而自變數(預測變數)為定量(metric)時,判別分析為一非常適當之技術,通常應用在解決 分類的問題上面。若因變數由兩個群體所構成,稱之為雙群體 —判別分析 (Two-Group Discriminant Analysis);若由多個群體構成,則稱之為多元判別分析(Multiple Discriminant Analysis;MDA)。
10、羅吉斯回歸分析(Logistic Analysis)
當判別分析中群體不符合正態分布假設時,羅吉斯回歸分析是一個很好的替代方法。羅吉斯回歸分析並非預測事件(event)是否發生,而是預測該事件的機 率。它將自變數與因變數的關系假定是S行的形狀,當自變數很小時,機率值接近為零;當自變數值慢慢增加時,機率值沿著曲線增加,增加到一定程度時,曲線協 率開始減小,故機率值介於0與1之間。

⑥ 當互聯網金融遇上大數據,會碰撞出什麼樣的火花

哈哈,就是誇客理財啦~

⑦ 互聯網金融是互聯網金融還是大數據金融

像阿里的「余額寶」才是大數據金融,像現在很火的P2P只能算互聯網金融,因為數據群無法達到大數據。

⑧ 如何在大數據分析中「掘金」

因此,行之有效的企業級信息優化戰略變得空前重要。由於預計2015年產生的數字內容中有90%將是非結構化數據,如簡訊和微博生成的信息,以及視頻和音頻,情況將變得越來越復雜。無論身處哪個行業,圍繞大數據及管理這些信息的挑戰都無處不在。·金融服務行業必須滿足客戶對數字銀行服務的期望,並處理風險和監管需求等問題;·在醫療和生命科學領域,患者隱私及葯物開發問題使合規成為了關鍵的投資動因;·了解客戶需求以提高服務和參與模式是旅遊和交通行業必不可少的;·在政府和公共事業領域,政府正在提高其智能及安全能力,以期更好地保護公眾;·實時的數據可視化、匯總和詮釋對於能源行業至關重要。毫無准備的企業可能會在應對現有原始信息的數量、種類和速度時手足無措。如果企業缺乏管理並處理多來源海量信息的能力,將會導致涉及整個企業層面的各類問題:·具有更先進的信息系統的競爭對手將能很好地利用數據並爭奪客戶;·盡管有更大量和來源,實現數據價值將越來越困難;·浪費大量時間過濾海量不相關的數據,而這些數據不能支持決策或推動其執行;·缺乏靈活性、分離的信息基礎設施成本將逐步增加。政府和企業迫切需要從無關的數據中獲取洞察,並有能力對其有效利用。那些能從戰略上迅速響應,並從海量信息中提取真正價值的企業將能獲得關鍵的市場領先地位。發揮信息的力量根據ColemanParkesResearch的研究[3]表明,亞太和日本地區62%的私有企業認為有效的信息優化戰略能幫助其獲得競爭優勢。但是僅有不到一半的企業採用了合適的解決方案並從大數據中獲得洞察,而目前僅有15%的企業將非結構化數據納入了其企業洞察、流程和戰略。企業的終極目標應是充分利用100%的信息來推動更快、更明智的業務決策。企業應能衡量信息戰略在新增收入、節約成本以及加速上市等方面所帶來的價值。要想在以信息為驅動力的新時代獲得成功,企業需要信息優化戰略以及可理解抽象概念的解決方案。企業的目標是通過涵蓋所有數據形式的信息管理和分析系統實現互聯性智能。這意味著他們必須:·建立一個敏捷的智能環境,並有合適的基礎設施來捕獲和存儲海量信息,進行實時分析並迅速適應不斷變化的優先事項;·對企業生態系統中的信息和智能戰略進行整合,以獲得對業務數據的完整視圖;·通過將洞察和理念轉化為行動而實現信息資產的全部價值。提升客戶體驗實現更好的客戶體驗是所有信息優化戰略的主要目標。改進企業搜索和分析信息的方式,以更好地了解客戶行為和需求,從而支持快速、明智的業務決策。這將有助於實現更好的客戶體驗和更高的忠誠度。信息洞察應整合所有客戶信息,無論客戶如何與企業進行互動,包括通過社交媒體、微博、移動應用,以及通過電話等其它方式。信息必須在不同的業務范圍內進行收集,同時還要解決潛在的隱私和安全問題。先進的信息技術能夠幫助企業增強其識別客戶喜好、問題和趨勢的能力。而這些情報可被用來更好地與客戶進行互動,同時提供超越競爭對手的洞察。這些新情報可在應用開發以及將應用遷移至雲的過程中發揮作用,而雲能讓客戶輕松、快速地獲得新服務。優化業務績效不僅是企業需要應對海量結構化和非結構化數據,數據也分布於多個可能互不相關的業務范圍,也存在於許多不同的應用中。現代數據中心的另一個關鍵能力是能夠處理大量的無關信息,從而獲得能提高業務績效的洞察。通過整合、遷移並匯總數據存儲,企業可以改進信息訪問,並降低IT運營成本。這能帶來簡單、靈活、迅速、低成本高收益的信息基礎設施,而此類基礎設施同時還具有可擴展性、模塊化特性,及可靠性。用智能信息基礎設施替換復雜的孤立資料庫,企業能夠在需要時捕捉、存儲並提供信息,無論採用哪種應用、規模有多大。充分利用100%的相關職能和運營數據能夠幫助客戶提高運營業績和經營利潤,並對信息生命周期管理進行自動化處理。信息優化的目標為構建一個服務於整個企業,從數據安全及合規,到分析和敏捷性的統一基礎設施。而由此帶來的快速、輕松分析信息的能力能夠幫助企業獲得更可靠的視圖,從而做出准確、有效的決策。管理安全和風險將能夠端到端管理100%大數據作為新目標,企業應研究更好的監管和安全措施來應對與日俱增的風險和復雜性。這些問題包括:不能充分利用目前所有可用數據進行及時、正確的決策所帶來的財務和法律風險,以及獲取數據並保證其是最新、最正確的。智能信息生態系統可管理安全環境中的數據,從而管理日常業務並降低風險。它還能利用洞察來引導企業投資和定價,並充分利用新的業務機會。將數據轉化為資產不能周密部署並迅速採取行動的企業有可能面臨被劇增的大數據淹沒的風險。另一方面,那些能夠實施全面的企業級信息優化戰略的企業所獲得的回報將是非常巨大的。這一戰略有助於縮小潛在的和最終實現的業務成果之間的差距。總之,它可以分為三大要素:·能捕獲、存儲、復制並擴展數據的信息基礎設施;·管理、保護、治理並充分利用數據的信息管理;·搜索、分析、理解數據並對其採取行動的信息洞察工具。能夠從自身數據資產中獲得深入洞察和價值的企業將開始收獲其實質性的信息回報。文章更新提醒功能已上線,幫助您及時了解本頻道動態。

⑨ 掘金大數據 「貴漂」正當時

掘金大數據 「貴漂」正當時_數據分析師考試

昨日,《貴陽市大數據產業人才隊伍建設調研報告》出爐。報告顯示,截至2014年底,該市人才總量60.4萬人、每萬人人才資源數1331人,分別比2012年增長11.2萬人和217人;企業經營管理人才、專業技術人才、技能人才與2012年相比分別增長4.24萬人、1.53萬人、6.2萬人;非公有制企業人才總量從2012年的21.5萬人增加到25.7萬人。

與此同時,上半年新增大數據產業注冊企業1270家,集聚人才超過2萬人。目前,貴陽市大數據及關聯企業已超過2000戶,人才近13萬人,約占人才總量的22%。

政策:領軍人才創辦大數據企業,可獲500萬元經費

貴陽市在全省率先制定實施《關於加快大數據產業人才隊伍建設的實施意見》、《服務外包及呼叫中心產業人才培養規劃》等專項政策文件,明確大數據產業人才發展的目標任務和創新舉措,提出4個方面19條培養儲備、引進集聚大數據人才的具體措施。

對創辦大數據企業的領軍人才、核心技術人才,免費提供人才公寓、工作場所,最高給予500萬元創業啟動資金和200萬元項目開發經費;對獲得省級以上科技進步獎、制定行業標准、獲得發明專利的團隊和個人,最高給予100萬元獎勵;對引進領軍人才、核心技術人才、高技能人才和招聘基礎人才的大數據企業,給予獎勵和補貼;對做出突出貢獻的領軍人才、創新創業人才,給予物質獎勵和精神激勵。

建設:多個「國」字型大小落戶貴陽

貴陽市深化京築創新驅動區域合作,強力推進中關村貴陽科技園建設,依託高新技術開發區、經濟技術開發區及重點產業園區,搭建大數據科技創新、項目研發、人才創業承載平台,成功組建中科院軟體所貴陽分部、北京貴陽大數據研究院、首都科技條件平台貴陽合作站、「千人計劃」大數據研究院等。

建成全國首家大數據交易所、首個全域公共免費WiFi城市、首個塊上集聚大數據公共平台、首個政府數據開放示範城市和首個大數據戰略實驗室。同時,開展貴陽大數據7系列基礎平台項目建設,從北京引進項目260個。

目前,貴陽市國家級研發機構16家,省級以上企業技術中心、人才基地87家,國家級、省級科技企業孵化器8家,創客空間17家,創業孵化器和投資機構近20家。7月,該市獲國家科技部批准創建「大數據產業創新試驗區」。

培養:政、校、企聯動,訂單式培養大數據人才

貴陽市實施大數據人才培養計劃,鼓勵在築高校(職業院校)開設大數據相關專業,支持校企合作建立教育培訓基地,資助大數據企業在職人員提升學歷學位和專業技能,打造「一基地、兩中心、三示範、多點輻射」的呼叫中心人才培養體系,政、校、企聯動,訂單式培養大數據人才。

貴陽市級財政安排2000多萬元專項經費,在貴陽幼兒師范高等專科學校、貴陽市經濟貿易中等專業學校掛牌建立呼叫中心服務外包學院及示範教學基地,建設坐席1300多個。依託互聯網+現代農業,與電商巨頭、職業院校、網路公司合作,採取「理論+實踐」方式培養電商能人。今年以來,全市培養呼叫中心專業人才4000多名、電商能人400多名。

引智:大數據產業成為貴陽引才聚才重要載體

以大數據人才為重點,貴陽市建立招商引資與招才引智融合互動機制,大力實施「築巢引鳳計劃」、「黔歸人才計劃」等,大力集聚產業發展急需人才。

近兩年來,貴陽市開展的大型招才引智活動中,大數據人才、項目引進比例佔40%以上,2014年引進大數據相關專業人才535名,今年以來大數據龍頭企業貴陽朗瑪信息公司引進人才174名,大數據產業已經成為貴陽市引才聚才的重要載體。

據統計,2013年至2015年上半年,該市直接引進各類高層次人才1882名,相當於前八年引才的總和,其中博士241名、碩士1380名、高級職稱261名。高層次人才引進流出比從2012年的36∶1提高到2014年的49∶1,引才數量及層次呈逐年提升態勢。

創業:已集聚創客團隊230多支

利用創建國家級大數據產業發展集聚示範區的機遇優勢,貴陽市深入推進人才改革管理試驗區建設,全力打造「政策+基地+資金+服務+平台」模式的創新創業全生態鏈。

如今,越來越多的黔籍人才和「創客」選擇貴陽創業興業。3月14日,「『北漂』已過時、『貴漂』是時尚」節目在騰訊網播出,關注人數1000多萬,評論逾7800條。據近日阿里巴巴集團旗下螞蟻金服發布的《大學生就業流向報告》和經濟學人智庫發布的《2015年中國新興城市報告》顯示,貴州進入了大學畢業生凈流入排行榜前列,貴陽在全國新興城市的綜合排名、經濟增長及外商直接投資三個方面均列第一。

2013年以來,高校畢業生到貴陽創業就業人數年均增長30%以上,全市新增創業實體11.6萬戶,帶動就業41萬人。目前全市集聚創客團隊230多支、創客1800多人。2014年,全市新增高新技術企業40家、增長23.1%,大數據產業總量650億元,同比增長68%,科技進步貢獻率、人才貢獻率分別達到56.4%和28.13%,高於全國、全省平均水平。

目標:創新創業人才「築夢」首選地

如何才能打造創新創業人才「築夢」首選地?

貴陽市將深化與發達地區人才交流合作機制,通過調動、聘用、掛職、兼職和項目合作、技術入股等形式合理配置大數據人才資源。採取支持高校、科研院所、企業培養和「人才+項目」的模式,依託國家、省、市重大科研項目、產業項目和工程項目,在實踐中培養聚集大數據產業骨幹人才。

研究提出具有創新性和引領性的大數據人才評價認定和職稱評聘辦法,開辟大數據人才職稱評審「綠色通道」,建立以能力為導向,以業績為依託,以品德、知識、能力等為主要內容的大數據人才評價指標新體系,力爭將大數據人才認定評定標准納入國家大數據標准委員會標准立項范疇,成為大數據人才標准起草城市和試驗城市。

以上是小編為大家分享的關於掘金大數據 「貴漂」正當時的相關內容,更多信息可以關注環球青藤分享更多干貨

⑩ 優秀的互聯網金融公司,都是怎麼玩大數據風控的

現在一提起互聯網金融行業、Fintech領域,人工智慧、大數據風控的熱度就直線飆升。許多交易規模比較大的互聯網金融公司都在努力發展大數據風控技術,以構建提供普惠金融服務的能力。
那麼,這些優秀的互聯網金融公司,都是怎麼玩大數據風控的呢?
陸金所:KYC 2.0系統
精準判斷投資者的風險承受能力
陸金所自成立起就引進國際領先的第四代風險管理系統,借鑒平安集團經驗,形成了成熟的風險管理數據模型。其近日又推出了KYC 2.0系統,力求通過大數據技術、機器學習以及金融工程等方法,建立完整的互聯網財富管理平台投資者適當性管理體系,在資金端對投資者進行「精準畫像」,並提供智能推薦服務。
據了解,KYC2.0系統在原有的保守、穩健、平衡、成長、進取五大類型基礎上對投資者風險承受力評估結果進行量化,每位用戶都會獲得專屬的風險承受能力分值,又稱「堅果財智分」,對投資者風險承受能力的判斷更精準。
點評:量化數據信息,進行大數據建模。
風控最好的數據還是金融數據,例如年齡、收入、職業、學歷、資產、負債等信用數據,這些數據同信用相關度高,可以反映用戶的還款能力和還款意願,這些數據因子在風控模型中必不可少,權重也很高,是風險評估最好的數據。
所以,陸金所以平安集團經驗為基礎運用到的大數據風控,使用的是圍繞用戶周圍的信用數據,這些數據的特點是和用戶的信用情況高度相關,可以作為一個重要因子進行錄入,對其個人進行打分,再對其進行個體分析,最終得到一個綜合評分,這就對用戶進行了一個精準的風險承受能力評判。
民貸天下:拓寬數據維度
實現純線上智能化服務
民貸天下基於穩健、安全、規范的風控理念,其風控部門確定了「風控從嚴」原則,設定了借款審查、貸中管理、貸後跟蹤等風控流程。目前,民貸天下正全力推進全智能化建設,構造一個完整的、從資產端到平台端的全鏈路大數據風控系統,通過對人工智慧、大數據分析、知識圖譜、區塊鏈等技術的運用,為平台運營及業務發展提供強大動力。
在傳統數據之外,民貸天下還不斷拓展數據維度,如在用戶授權下,對用戶社交數據、訪問時間、相關認證、通訊記錄等數據整合分析,並且與螞蟻金服、芝麻信用、前海徵信、同盾等第三方機構緊密合作,進一步豐富對用戶的數據畫像,使民貸天下的大數據風控系統更加精準,從而實現從客戶申請、受理、審核、授信、放款到貸中貸後管理等純線上智能化服務。
點評:拓寬數據維度,是對傳統風控的補充。
傳統風控模型已經不能適應復雜的現代風險管理環境,特別在數據信息錄入維度上,影響用戶信用評分的信息較多,很多都沒有引入到風險評估流程。而大數據風控可以提供全面的數據(數據的廣度),強相關數據(數據的深度),實效性數據(數據的鮮活度)。
民貸天下利用這樣的大數據風控,通過與第三方合作等方式,將內部數據以及原有數據打通和整合之後,就會影響風險評估結果,提升信用風險管理水平,客觀地反映用戶風險水平。這些多維度、全面的信息正是大數據風控的優勢所在,同時也是對傳統風控一個很好的補充,進一步實現智能化服務。
真融寶:以數據介質為主
構建數據和模型演算法的核心技術
真融寶以數據介質為主,利用分布式計算處理數據,以公眾互聯網的全網為平台,以全網收集的數據來補充內部網集成的數據。並且在用戶數據方面,對每個新進用戶建立一份電子檔案,對每名用戶投資需求進行了解登記,並對每一筆資金進行多重備份,形成動態的用戶資金數據。
除此之外,真融寶還利用大數據進行決策,將金融活動轉化為智能數據處理活動,降低人為因素的干擾,提高風險評估、分析和預警能力,大數據提供的信息使得真融寶的決策更加科學智能化,對於風控的精準度控制起到非常大的幫助作用。
點評:數據和模型演算法,可建立實時風險管理視圖。
大數據的數據採集和計算能力,可以幫助企業建立實時的風險管理視圖。藉助於全面多緯度的數據、自我學習能力的風控模型、實時計算結果、壞種子數據,真融寶可以通過大量的數據累積,能夠產生出非常有效的識別客戶的能力,提升量化風險評估能力。
數據、技術、模型、分析將成為信用風險評估的四個關鍵元素,其背後的力量就是大數據的技術和分析能力。真融寶利用大數據的風控能力,實時輸出風險因子信息,提高了風險管理的及時性。
一直以來,風控都是金融機構的生命線。從陸金所、民貸天下、真融寶這三家互聯網金融公司為例,預計在未來,可能每家做借貸類的互聯網金融公司都會發展出屬於自己的一套大數據風控體系,並且隨著互聯創業公司的業務數據越來越大,數據基礎會逐漸扎實。

閱讀全文

與互聯網金融大數據中掘金當趁早相關的資料

熱點內容
中國外匯管制限額 瀏覽:288
股指期貨後買基金 瀏覽:254
2880表價格 瀏覽:232
中林集團信託 瀏覽:193
在陸金所里投資安全嗎 瀏覽:315
期貨大行情特點 瀏覽:239
買基金用什麼賬戶 瀏覽:903
英鎊對人民幣匯率建行 瀏覽:185
股票簡單解釋 瀏覽:34
pe股票ttm是什麼意思 瀏覽:825
海航投資值得長線嗎 瀏覽:358
什麼股票賺錢最快 瀏覽:295
東亞銀行信託 瀏覽:890
電子賬戶交易密碼忘了 瀏覽:241
專利權金融資產 瀏覽:81
工商銀行2017年投資 瀏覽:260
股票為什麼要每日做t 瀏覽:987
鋅價格西藏礦業 瀏覽:504
揚州股票開戶 瀏覽:437
智鑫葯業股票 瀏覽:52