導航:首頁 > 金融投資 > 金融機構分類知識圖譜

金融機構分類知識圖譜

發布時間:2021-03-11 13:48:34

A. 中騰信如何利用知識圖譜技術,實現風險管理中的實時應用

中騰信的金融科技實力提升從應用效果來看,公司自主研發的知識圖譜技術,可專以有效識別傳統類型屬的欺詐團伙,知識圖譜實現了在中騰信風險管理中的實時應用,為欺詐風險防控、信用風險管理提供了新維度,特別是可以對傳統類型欺詐團伙的有效識別,提升了風險管理能力;針對近百億級多種維度的數據進行處理以及社區發現演算法的優化,實現了貸前應用秒級響應;劃分了數萬個網路社區,並對好壞社區進行分類處理,能夠支持客群組合管理、額度管理等方面的正面及負面應用;對存量客戶實現了多度關聯關系的識別;基於社區的關聯關系生成了上百個關鍵社區變數用於風險規則設置及評分模型優化等等。

B. 知識地圖和知識圖譜的區別

僅供參考
知識地圖是一種知識(既包括顯性的、可編碼的知識,也包括隱性知識)導航系統,並顯示不同的知識存儲之間重要的動態聯系。它是知識管理系統的輸出模塊,輸出的內容包括知識的來源,整合後的知識內容,知識流和知識的匯聚。它的作用是協助組織機構發掘其智力資產的價值,所有權,位置和使用方法;使組織機構內各種專家技能轉化為顯性知識並進而內化為組織的知識資源;鑒定並排除對知識流的限制因素;發揮機構現有的知識資產的杠桿作用。

知識圖譜,也稱為科學知識圖譜,它通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,並利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。為學科研究提供切實的、有價值的參考。
知識圖譜(Mapping Knowledge Domain)也被稱為科學知識圖譜,在圖書情報界稱為知識域可視化或知識領域映射地圖,是顯示知識發展進程與結構關系的一系列各種不同的圖形,用可視化技術描述知識資源及其載體,挖掘、分析、構建、繪制和顯示知識及它們之間的相互聯系。
具體來說,知識圖譜是通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,並利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。它把復雜的知識領域通過數據挖掘、信息處理、知識計量和圖形繪制而顯示出來,揭示知識領域的動態發展規律,為學科研究提供切實的、有價值的參考。迄今為止,其實際應用在發達國家已經逐步拓展並取得了較好的效果,但它在我國仍屬研究的起步階段。

C. 百度知識圖譜和google知識圖譜的區別

知識圖譜(knowledge graph)是Google推出來的一項技術概念,是語義搜索的一個應用,背後涉及到NLP,語義數據分析,語義網技術等等。

目前來說,Google的知識圖譜從三個方面來提高搜索質量,消除歧義、右側知識卡片、知識發現。網路的「網路知心」也是知識圖譜的一個應用。歸根結底知識圖譜的技術基礎都是一樣的,那就是語義數據和語義網,只是在前端應用上兩個公司有所區別。。

D. 除了百度、阿里、騰訊,還有哪些做知識圖譜的企業

做搜索的大部分抄都已經構建了自己的知識圖譜,比如Google Knowledge Graph。國內互聯網公司也有很多在做的,比如美團大腦。

而2B也有不少優秀的做知識圖譜的企業,比如智器雲科技,有火眼金睛產品能夠快速構建知識圖譜並進行可視化認知分析,有天羅地網產品,據說可對千億級別的數據進行知識圖譜構建。

其它還有不少,比如明略,也是行業的姣姣者。

E. 知識圖譜有什麼用處

「知識圖譜的應用涉及到眾多行業,尤其是知識密集型行業,目前關注度比較高的領域:醫療、金融、法律、電商、智能家電等。」基於信息、知識和智能形成的閉環,從信息中獲取知識,基於知識開發智能應用,智能應用產生新的信息,從新的信息中再獲取新的知識,不斷迭代,就可以不斷產生更加豐富的知識圖譜,更加智能的應用。

如果說波士頓動力的翻跟頭是在幫機器人鍛煉筋骨,那麼知識圖譜的「繪制」則是在試圖「創造」一個能運轉的機器人大腦。

「目前,還不能做到讓機器理解人的語言。」中國科學院軟體所研究員、中國中文信息學會副理事長孫樂說。無論是能逗你一樂的Siri,還是會做詩的小冰,亦或是會「懸絲診脈」的沃森,它們並不真正明白自己在做什麼、為什麼這么做。

讓機器學會思考,要靠「譜」。這個「譜」被稱為知識圖譜,意在將人類世界中產生的知識,構建在機器世界中,進而形成能夠支撐類腦推理的知識庫。

為了在國內構建一個關於知識圖譜的全新產學合作模式,知識圖譜研討會日前召開,來自高校院所的研究人員與產業團隊共商打造全球化的知識圖譜體系,建立世界領先的人工智慧基礎設施的開拓性工作。

技術原理:把文本轉化成知識

「對於『姚明是上海人』這樣一個句子,存儲在機器里只是一串字元。而這串字元在人腦中卻是『活』起來的。」孫樂舉例說。比如說到「姚明」,人會想到他是前美職籃球員、「小巨人」、中鋒等,而「上海」會讓人想到東方明珠、繁華都市等含義。但對於機器來說,僅僅說「姚明是上海人」,它不能和人類一樣明白其背後的含義。機器理解文本,首先就需要了解背景知識。

那如何將文本轉化成知識呢?

「藉助信息抽取技術,人們可以從文本中抽取知識,這也正是知識圖譜構建的核心技術。」孫樂說,目前比較流行的是使用「三元組」的存儲方式。三元組由兩個點、一條邊構成,點代表實體或者概念,邊代表實體與概念之間的各種語義關系。一個點可以延伸出多個邊,構成很多關系。例如姚明這個點,可以和上海構成出生地的關系,可以和美職籃構成效力關系,還可以和2.26米構成身高關系。

「如果這些關系足夠完善,機器就具備了理解語言的基礎。」孫樂說。那麼如何讓機器擁有這樣的「理解力」呢?

「上世紀六十年代,人工智慧先驅麻省理工學院的馬文·明斯基在一個問答系統項目SIR中,使用了實體間語義關系來表示問句和答案的語義,劍橋語言研究部門的瑪格麗特·瑪斯特曼在1961年使用Semantic Network來建模世界知識,這些都可被看作是知識圖譜的前身。」孫樂說。

隨後的Wordnet、中國的知網(Hownet)也進行了人工構建知識庫的工作。

「這里包括主觀知識,比如社交網站上人們對某個產品的態度是喜歡還是不喜歡;場景知識,比如在某個特定場景中應該怎麼做;語言知識,例如各種語言語法;常識知識,例如水、貓、狗,教人認的時候可以直接指著教,卻很難讓計算機明白。」孫樂解釋,從這些初步的分類中就能感受到知識的海量,更別說那些高層次的科學知識了。

構建方式:從手工勞動到自動抽取

「2010年之後,維基網路開始嘗試『眾包』的方式,每個人都能夠貢獻知識。」孫樂說,這讓知識圖譜的積累速度大大增加,後續網路、互動網路等也採取了類似的知識搜集方式,發動公眾使得「積沙」這個環節的時間大大縮短、效率大大增加,無數的知識從四面八方趕來,迅速集聚,只待「成塔」。

面對如此大量的數據,或者說「文本」,知識圖譜的構建工作自然不能再手工勞動,「讓機器自動抽取結構化的知識,自動生成『三元組』。」孫樂說,學術界和產業界開發出了不同的構架、體系,能夠自動或半自動地從文本中生成機器可識別的知識。

孫樂的演示課件中,有一張生動的圖畫,一大摞文件紙吃進去,電腦馬上轉化為「知識」,但事實遠沒有那麼簡單。自動抽取結構化數據在不同行業還沒有統一的方案。在「網路知識圖譜」的介紹中這樣寫道:對提交至知識圖譜的數據轉換為遵循Schema的實體對象,並進行統一的數據清洗、對齊、融合、關聯等知識計算,完成圖譜的構建。「但是大家發現,基於維基網路,結構化半結構化數據挖掘出來的知識圖譜還是不夠,因此目前所有的工作都集中在研究如何從海量文本中抽取知識。」孫樂說,例如谷歌的Knowledge Vault,以及美國國家標准與技術研究院主辦的TAC-KBP評測,也都在推進從文本中抽取知識的技術。

在權威的「知識庫自動構建國際評測」中,從文本中抽取知識被分解為實體發現、關系抽取、事件抽取、情感抽取等4部分。在美國NIST組織的TAC-KBP中文評測中,中科院軟體所—搜狗聯合團隊獲得綜合性能指標第3名,事件抽取單項指標第1名的好成績。

「我國在這一領域可以和國際水平比肩。」孫樂介紹,中科院軟體所提出了基於Co-Bootstrapping的實體獲取演算法,基於多源知識監督的關系抽取演算法等,大幅度降低了文本知識抽取工具構建模型的成本,並提升了性能。

終極目標:將人類知識全部結構化

《聖經·舊約》記載,人類聯合起來興建希望能通往天堂的高塔——「巴別塔」,而今,創造AI的人類正在建造這樣一座「巴別塔」,幫助人工智慧企及人類智能。

自動的做法讓知識量開始形成規模,達到了能夠支持實際應用的量級。「但是這種轉化,還遠遠未達到人類的知識水平。」孫樂說,何況人類的知識一直在增加、更新,一直在動態變化,理解也應該與時俱進地體現在機器「腦」中。

「因此知識圖譜不會是一個靜止的狀態,而是要形成一個循環,這也是美國卡耐基梅隆大學等地方提出來的Never Ending Learning(學無止境)的概念。」孫樂說。

資料顯示,目前谷歌知識圖譜中記載了超過35億事實;Freebase中記載了4000多萬實體,上萬個屬性關系,24億多個事實;網路記錄詞條數1000萬個,網路搜索中應用了聯想搜索功能。

「在醫學領域、人物關系等特定領域,也有專門的知識圖譜。」孫樂介紹,Kinships描述人物之間的親屬關系,104個實體,26種關系,10800個事實;UMLS在醫學領域描述了醫學概念之間的聯系,135個實體,49種關系,6800個事實。

「這是一幅充滿美好前景的宏偉藍圖。」孫樂說,知識圖譜的最終目標是將人類的知識全部形式化、結構化,並用於構建基於知識的自然語言理解系統。

盡管令業內滿意的「真正理解語言的系統」還遠未出現,目前的「巴別塔」還只是在基礎層面,但相關的應用已經顯示出廣闊的前景。例如,在網路輸入「冷凍電鏡」,右豎條的關聯將出現「施一公」,輸入「撒幣」,將直接在搜索項中出現「王思聰」等相關項。其中蘊含著機器對人類意圖的理解。

F. 什麼是知識圖譜

知識圖譜,是通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,並利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。

G. 知識圖譜在金融行業的應用重要嗎

知識圖譜對於信貸風控環節的價值巨大,尤其是針對借款端風控的貸前反欺詐環節。小花錢包借款環節就應用了知識圖譜技術,

H. 知識圖譜主要是做什麼的

知識圖譜其實就是把我們從小學到高中的知識做成一個思維導圖,便於我們了解我們在學習什麼,從目的出發,然後能更好地掌握知識。

閱讀全文

與金融機構分類知識圖譜相關的資料

熱點內容
個人如何開立期貨期權賬戶嗎 瀏覽:251
亮亮視野融資 瀏覽:190
理財手機銀行 瀏覽:705
米庄理財大嗎 瀏覽:571
信託疫情建議 瀏覽:348
年年有魚理財 瀏覽:745
股指期貨當月IC 瀏覽:870
天天基金開戶手機號 瀏覽:943
融資花沒了 瀏覽:159
a輪融資屬於什麼融資 瀏覽:225
河北燕郊銀行貸款公司 瀏覽:587
廣西防城港市貸款 瀏覽:475
期貨交易的指令 瀏覽:679
公積金貸款可以貸幾成 瀏覽:606
外匯cctv 瀏覽:819
期貨大宗商品為什麼會停盤 瀏覽:302
易方達並購重級基金161123 瀏覽:254
期貨籌碼計算公式 瀏覽:142
白銀外匯投資 瀏覽:598
股票投資堂 瀏覽:636