Ⅰ 如何對數升級之後的資料庫進行數據完整性和准確性的校驗
為了防止不符合規范的數據進入資料庫,在用戶對數據進行插入、修改、刪除等操作時,DBMS自動按照一定的約束條件對數據進行監測,使不符合規范的數據不能進入資料庫,以確保資料庫中存儲的數據正確、有效、相容。
1 數據的完整性
約束是用來確保數據的准確性和一致性。數據的完整性就是對數據的准確性和一致性的一種保證。
數據完整性(Data Integrity)是指數據的精確(Accuracy)和可靠性(Reliability)。
分為以下四類:
1) 實體完整性:規定表的每一行在表中是惟一的實體。
2) 域完整性:是指表中的列必須滿足某種特定的數據類型約束,其中約束又包括取值范圍、精度等規定。
3) 參照完整性:是指兩個表的主關鍵字和外關鍵字的數據應一致,保證了表之間的數據的一致性,防止了數據丟失或無意義的數據在資料庫中擴散。
4) 用戶定義的完整性:不同的關系資料庫系統根據其應用環境的不同,往往還需要一些特殊的約束條件。用戶定義的完整性即是針對某個特定關系資料庫的約束條件,它反映某一具體應用必須滿足的語義要求。
2 完整性約束的類型:
可分為三種類型:與表有關的約束、域(Domain)約束、斷言(Assertion)
1) 與表有關的約束:是表中定義的一種約束。可在列定義時定義該約束,此時稱為列約束,也可以在表定義時定義約束,此時稱為表約束。
2) 域(Domain)約束:在域定義中被定義的一種約束,它與在特定域中定義的任何列都有關系。
3) 斷言(Assertion):在斷言定義時定義的一種約束,它可以與一個或多個表進行關聯。
一、 與表有關的約束:包括列約束(表約束+NOT NULL)和表約束(PRIMARY KEY、foreign key、check、UNIQUE) 。
(1) not null(非空)約束: 只用於定義列約束。
語法如下:
Colunm_name datatype | domain not null
實例:
create table Employee
(
emp_id int not null,
emp_name varchar(10) not null,
address varchar(40) ,
)
創建之後,如果往表Employee表中非空約束中插入空值,insert into Employee values(1,null,'neimeng')將會出錯。如下:
Msg 515, Level 16, State 2, Line 1
Cannot insert the value NULL into column 'emp_name', table 'Student.dbo.Employee';
column does not allow nulls. INSERT fails.
The statement has been terminated.
(2) unique(惟一)約束:用於指明創建惟一約束的列上的取值必須惟一。
語法如下:
Colunm_name datatype | domain unique
實例:
create table EmployeeInfo
(
emp_id int not null,
emp_name varchar(10) not null,
phone char(11) unique,
address varchar(40) ,
)
如下往EmployeeInfo插入數據時,如果兩條記錄的phone不惟一,
insert into EmployeeInfo values(1,'abcdwxc','neimeng','13612345678')
insert into EmployeeInfo values(2,'terry','neimeng','13612345678')
則會出現錯誤。如下:
(1 row(s) affected)
Msg 2627, Level 14, State 1, Line 2
Violation of UNIQUE KEY constraint 'UQ__EmployeeInfo__060DEAE8'. Cannot insert plicate key in object 'dbo.EmployeeInfo'.
The statement has been terminated.
除了在定義列時添加unique約束外,也可以將unique約束作為表約束添加。即把它作為表定義的元素。
語法如下:
[CONSTRAINT constraint_name] unique (column1,column2,.....)
實例:
create table EmployeeInfo
(
emp_id int not null,
emp_name varchar(10) not null,
phone char(11)
address varchar(40) ,
constraint p_uniq unique(phone)
)
(3) primary key(主鍵)約束:用於定義基本表的主鍵,起惟一標識作用,其值不能為null,也不能重復,以此來保證實體的完整性。
語法如下:
Colunm_name datatype | domain primary key
實例:
drop table EmployeeInfo
create table EmployeeInfo
(
emp_id int primary key,
emp_name varchar(10) not null,
phone char(11),
address varchar(40) ,
)
如果向EmployeeInfo表插入的emp_id重復了或者插入時emp_id為null值,則會出錯。
可以在創建表時,創建主鍵約束,也可創建表完成以後,創建主鍵,例如:
alter table EmployeeInfo
add constraint e_prim primary key(emp_id)
primary key 與 unique的區別:
1.在一個表中,只能定義一個primary key約束,但可定義多個unique約束。
2.對於指定為primary key的一個列或多個列的組合,其中任何一個列都不能出現空值,而對於unique所約束的惟一鍵,則允許為null,只是null值最多有一個。
(4) foreign key(外鍵)約束:定義了一個表中數據與另一個表中的數據的聯系。
foreign key約束指定某一個列或一組列作為外部鍵,其中包含外部鍵的表稱為子表,包含外部鍵所引用的主鍵的表稱為父表。系統保證,表在外部鍵上的取值要麼是父表中某一主鍵,要麼取空值,以此保證兩個表之間的連接,確保了實體的參照完整性。
語法如下:
Colunm_name datetype | domain references table_name(column)
[match full|partial|simple] //註:sqlserver不支持。
[referential triggered action]
說明:table_name為父表的表名,column為父表中與外鍵對應的主鍵值。
[match full|partial|simple]為可選子句,用於設置如何處理外鍵中的null值。
[referential triggered action]也為可選子句,用於設置更新、刪除外鍵列時的操作準則。
可以為表的一列或多列創建foreign key 約束,如果為多列創建 foreign key約束,將分別與主表中的相應主鍵相對應。
實例:
create table EmployeeInfo
(
emp_id int primary key,
emp_name varchar(10) not null,
account char(4) primary key,
phone char(11)
address varchar(40) ,
)
create table Emp_Sal
(
emp_id int , account CHAR(4) ,salary DECIMAL(5,1),
CONSTRAINT E_SAL FOREIGN KEY(emp_id,account) REFERENCES EmployeeInfo (emp_id,account))
)
也可以表創建以後添加到表上。如下:
create table Emp_Sal
(
emp_id int ,emp_name varchar(10) not null, account CHAR(4) ,salary DECIMAL(5,1),
)
alter table Emp_Sal
add CONSTRAINT E_SAL FOREIGN KEY(emp_id,account) REFERENCES EmployeeInfo (emp_id,account)
該外鍵的作用:確保表Emp_Sal的每個emp_id列都對應表EmployeeInfo中相應的emp_id。此時,表EmployeeInfo為父表,而表Emp_Sal為子表。子表的emp_id列參照父表的emp_id列。
如果想在子表的emp_id列插入一個值,首先父表的emp_id列必須存在,否則會插入失敗。如果想從父表的emp_id刪除一個值,則必須無刪除子表emp_id列中所有與之對應的值。
(注:foreign key 列上的取值可以取null)。
潛在問題:由於foreign key列上可以取空值,DBMS將跳過對foreign key約束的檢查,因此如果插入Emp_Sal如下數據:
insert into Emp_Sal values(6,null,null) 則插入到Emp_Sal中,但其主表的相關列卻不存在。
解決辦法:
(1)將聯合外鍵的列添加not null約束,但這限制了用戶的部分操作。
(2)採用Match子句。(sqlserver不支持).
更新、刪除操作規則:
在刪除或更新有primary key值的行,且該值與子表的foreign key中一個或多個值相匹配時,會引起匹配完整性的喪失。
在foreign key創建語法中,提供了可選的on update和on delete子句,也就是上面的[referential triggered action]。可用此保持引用完整性。
on update / on delete
no action|cascade|restrict|set null|set default
no action:更新或刪除父表中的數據時,如果會使子表中的外鍵違反引用完整性,該動作將被禁止執行。不過在某些條件下,可出現暫時的,但在數據的最終狀態中,不能違反外鍵的引用完整性。
cascade: 當父表中被引用列的數據被更新或刪除時,子表中的相應的數據也被更新或刪除。
restrict:與no action規則基本相同,只是引用列中的數據永遠不能違反外鍵的引用完整性,暫時的也不行。
set null:當父表數據被更新或刪除時,子表中的相應數據被設置成Null值,前提是子表中的相應列允許null值。
set default:當父表數據被更新或刪除時,子表中的數據被設置成默認值。前提是子表中的相應列設置有默認值。
(5) check(校驗)約束:用來檢查欄位值所允許的范圍。DBMS每當執行delete,insert或update語句時,都對這個約束過濾。如果為true,則執行。否則,取消執行並提示錯誤。
列定義語法如下:
Column datetype | domain check(search condition)
表約束語法如下:
constraint constraint_name check(search condition)
實例如下:
create table Emp_Sal
(
emp_id int , account CHAR(4) ,salary DECIMAL(5,1),
constraint validsal check(salary >=1000 and salary<=10000)
)
如果此時,再往表中插入如下語句則會出錯:(因為不滿足salary大於等於1000的約束。)
insert into Emp_Sal values(8,'12324343',800.0)
二、 域約束:(sqlserver 不支持)
語法如下:
create domain domain_name as data type
[default default_value]
[constraint constraint_name] check(value condition expression)
例如:
create domain valid_no as int
constraint constraint_no check(value between 100 and 999)
然後創建表時,使用valid_no域。
create table TestDomain
(
emp_id valid_no,
emp_name varchar(10),
)
三、斷言約束:不必與特定的列綁定,可以理解為能應用於多個表的check約束,因此必須在表定義之外獨立創建斷言。
語法如下:
create assertion constraint_name
check search condition
例如:
create assertion name
check (Emp_Sal.emp_id in(select emp_id from EmployeeInfo where emp_name is not null)
添加斷言後,每當試圖添加或修改Emp_Sal表中的數據時,就對斷言中的搜索條件求值,如果為false,則取消執行,給出提示
Ⅱ CRC校驗為什麼能夠保證數據的准確性
CRC校驗碼的基本思想是利用線性編碼理論,在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的監督碼(既CRC碼)r位,並附在信息後邊,構成一個新的二進制碼序列數共(k+ r)位,最後發送出去。在接收端,則根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。 在數據存儲和數據通訊領域,CRC無處不在:著名的通訊協議X.25的FCS(幀檢錯序列)採用的是CRC. CCITT,ARJ、LHA等壓縮工具軟體採用的是CRC32,磁碟驅動器的讀寫採用了CRC16,通用的圖像存儲格式GIF、TIFF等也都用CRC作為檢錯手段。 CRC的本質是模-2除法的余數,採用的除數不同,CRC的類型也就不一樣。通常,CRC的除數用生成多項式來表示。最常用的CRC碼的生成多項式有CRC16,CRC32. 以CRC16為例,16位的CRC碼產生的規則是先將要發送的二進制序列數左移16位(既乘以2^16)後,再除以一個多項式,最後所得到的余數既是 CRC碼,如下式所示,其中K(X)表示n位的二進制序列數,G(X)為多項式,Q(X)為整數,R(X)是余數(既CRC碼)。 K(X)>>16=G(x)Q(x)+R(x) 求CRC碼所採用模2加減運演算法則,既是不帶進位和借位的按位加減,這種加減運算實際上就是邏輯上的異或運算,加法和減法等價,乘法和除法運算與普通代數式的乘除法運算是一樣,符合同樣的規律。生成CRC碼的多項式如下,其中CRC-16和CRC-CCITT產生16位的CRC碼,而CRC-32則產生的是32位的CRC碼 接收方將接收到的二進制序列數(包括信息碼和CRC碼)除以多項式,如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤,關於其原理這里不再多述。用軟體計算CRC碼時,接收方可以將接收到的信息碼求CRC碼,比較結果和接收到的CRC碼是否相同。 CCITT推薦的高級數據鏈路控制規程HDLC的幀校驗序列FCS中,使用CCITT-16即CRC16,其生成多項式為G(x)=x16+x12+x5 +1, CRC-32的生成多項式為G(x)=x32+x26+x23+x22+x16+x11+x10+x16+x8+x7+x5+x4+x2+x+1 參考資料: http://xmtrabbit.blog.163.com/blog/static/1613871320075240453210/
Ⅲ 互聯網金融是如何保證數據安全有懂行的嗎
現在不是有什麼阿里雲,阿里金融雲什麼的嗎?我投的一個平台就是用阿里金融雲,數據從來沒有泄漏過,現對來說還是很安全的。但是肯定要交錢的。
Ⅳ 常用數據校驗方法有哪些
奇偶校驗」。內存中最小的單位是比特,也稱為「位」,位有隻有兩種狀態分別以1和0來標示,每8個連續的比特叫做一個位元組(byte)。不帶奇偶校驗的內存每個位元組只有8位,如果其某一位存儲了錯誤的值,就會導致其存儲的相應數據發生變化,進而導致應用程序發生錯誤。而奇偶校驗就是在每一位元組(8位)之外又增加了一位作為錯誤檢測位。在某位元組中存儲數據之後,在其8個位上存儲的數據是固定的,因為位只能有兩種狀態1或0,假設存儲的數據用位標示為1、1、 1、0、0、1、0、1,那麼把每個位相加(1+1+1+0+0+1+0+1=5),結果是奇數,那麼在校驗位定義為1,反之為0。當CPU讀取存儲的數據時,它會再次把前8位中存儲的數據相加,計算結果是否與校驗位相一致。從而一定程度上能檢測出內存錯誤,奇偶校驗只能檢測出錯誤而無法對其進行修正,同時雖然雙位同時發生錯誤的概率相當低,但奇偶校驗卻無法檢測出雙位錯誤。
MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc 發明,由 MD2/MD3/MD4 發展而來的。MD5的實際應用是對一段Message(位元組串)產生fingerprint(指紋),可以防止被「篡改」。舉個例子,天天安全網提供下載的MD5校驗值軟體WinMD5.zip,其MD5值是,但你下載該軟體後計算MD5 發現其值卻是,那說明該ZIP已經被他人修改過,那還用不用該軟體那你可自己琢磨著看啦。
MD5廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的,用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,來驗證該用戶的合法性。
MD5校驗值軟體WinMD5.zip漢化版,使用極其簡單,運行該軟體後,把需要計算MD5值的文件用滑鼠拖到正在處理的框里邊,下面將直接顯示其MD5值以及所測試的文件名稱,可以保留多個文件測試的MD5值,選定所需要復制的MD5值,用CTRL+C就可以復制到其它地方了。
參考資料:http://..com/question/3933661.html
CRC演算法原理及C語言實現 -來自(我愛單片機)
摘 要 本文從理論上推導出CRC演算法實現原理,給出三種分別適應不同計算機或微控制器硬體環境的C語言程序。讀者更能根據本演算法原理,用不同的語言編寫出獨特風格更加實用的CRC計算程序。
關鍵詞 CRC 演算法 C語言
1 引言
循環冗餘碼CRC檢驗技術廣泛應用於測控及通信領域。CRC計算可以靠專用的硬體來實現,但是對於低成本的微控制器系統,在沒有硬體支持下實現CRC檢驗,關鍵的問題就是如何通過軟體來完成CRC計算,也就是CRC演算法的問題。
這里將提供三種演算法,它們稍有不同,一種適用於程序空間十分苛刻但CRC計算速度要求不高的微控制器系統,另一種適用於程序空間較大且CRC計算速度要求較高的計算機或微控制器系統,最後一種是適用於程序空間不太大,且CRC計算速度又不可以太慢的微控制器系統。
2 CRC簡介
CRC 校驗的基本思想是利用線性編碼理論,在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的監督碼(既CRC碼)r位,並附在信息後邊,構成一個新的二進制碼序列數共(k+r)位,最後發送出去。在接收端,則根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。
16位的CRC碼產生的規則是先將要發送的二進制序列數左移16位(既乘以 )後,再除以一個多項式,最後所得到的余數既是CRC碼,如式(2-1)式所示,其中B(X)表示n位的二進制序列數,G(X)為多項式,Q(X)為整數,R(X)是余數(既CRC碼)。
(2-1)
求CRC 碼所採用模2加減運演算法則,既是不帶進位和借位的按位加減,這種加減運算實際上就是邏輯上的異或運算,加法和減法等價,乘法和除法運算與普通代數式的乘除法運算是一樣,符合同樣的規律。生成CRC碼的多項式如下,其中CRC-16和CRC-CCITT產生16位的CRC碼,而CRC-32則產生的是32位的CRC碼。本文不討論32位的CRC演算法,有興趣的朋友可以根據本文的思路自己去推導計算方法。
CRC-16:(美國二進制同步系統中採用)
CRC-CCITT:(由歐洲CCITT推薦)
CRC-32:
接收方將接收到的二進制序列數(包括信息碼和CRC碼)除以多項式,如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤,關於其原理這里不再多述。用軟體計算CRC碼時,接收方可以將接收到的信息碼求CRC碼,比較結果和接收到的CRC碼是否相同。
3 按位計算CRC
對於一個二進制序列數可以表示為式(3-1):
(3-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(3-2)所示:
(3-2)
可以設: (3-3)
其中 為整數, 為16位二進制余數。將式(3-3)代入式(3-2)得:
(3-4)
再設: (3-5)
其中 為整數, 為16位二進制余數,將式(3-5)代入式(3-4),如上類推,最後得到:
(3-6)
根據CRC的定義,很顯然,十六位二進制數 既是我們要求的CRC碼。
式(3 -5)是編程計算CRC的關鍵,它說明計算本位後的CRC碼等於上一位CRC碼乘以2後除以多項式,所得的余數再加上本位值除以多項式所得的余數。由此不難理解下面求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,0x1021與多項式有關。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned char i;
unsigned int crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&0x8000)!=0) {crc*=2; crc^=0x1021;} /* 余式CRC乘以2再求CRC */
else crc*=2;
if((*ptr&i)!=0) crc^=0x1021; /* 再加上本位的CRC */
}
ptr++;
}
return(crc);
}
[code]
按位計算CRC雖然代碼簡單,所佔用的內存比較少,但其最大的缺點就是一位一位地計算會佔用很多的處理器處理時間,尤其在高速通訊的場合,這個缺點更是不可容忍。因此下面再介紹一種按位元組查錶快速計算CRC的方法。
4 按位元組計算CRC
不難理解,對於一個二進制序列數可以按位元組表示為式(4-1),其中 為一個位元組(共8位)。
(4-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(4-2)
可以設: (4-3)
其中 為整數, 為16位二進制余數。將式(4-3)代入式(4-2)得:
(4-4)
因為:
(4-5)
其中 是 的高八位, 是 的低八位。將式(4-5)代入式(4-4),經整理後得:
(4-6)
再設: (4-7)
其中 為整數, 為16位二進制余數。將式(4-7)代入式(4-6),如上類推,最後得:
(4-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(4 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組余式CRC碼的低8位左移8位後,再加上上一位元組CRC右移8位(也既取高8位)和本位元組之和後所求得的CRC碼,如果我們把8位二進制序列數的CRC全部計算出來,放如一個表裡,採用查表法,可以大大提高計算速度。由此不難理解下面按位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[256]={ /* CRC余式表 */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x 1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
crc=0;
while(len--!=0) {
da=(uchar) (crc/256); /* 以8位二進制數的形式暫存CRC的高8位 */
crc<<=8; /* 左移8位,相當於CRC的低8位乘以 */
crc^=crc_ta[da^*ptr]; /* 高8位和當前位元組相加後再查表求CRC ,再加上以前的CRC */
ptr++;
}
return(crc);
}
很顯然,按位元組求CRC時,由於採用了查表法,大大提高了計算速度。但對於廣泛運用的8位微處理器,代碼空間有限,對於要求256個CRC余式表(共512位元組的內存)已經顯得捉襟見肘了,但CRC的計算速度又不可以太慢,因此再介紹下面一種按半位元組求CRC的演算法。
5 按半位元組計算CRC
同樣道理,對於一個二進制序列數可以按位元組表示為式(5-1),其中 為半個位元組(共4位)。
(5-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(5-2)
可以設: (5-3)
其中 為整數, 為16位二進制余數。將式(5-3)代入式(5-2)得:
(5-4)
因為:
(5-5)
其中 是 的高4位, 是 的低12位。將式(5-5)代入式(5-4),經整理後得:
(5-6)
再設: (5-7)
其中 為整數, 為16位二進制余數。將式(5-7)代入式(5-6),如上類推,最後得:
(5-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(5 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組CRC碼的低12位左移4位後,再加上上一位元組余式CRC右移4位(也既取高4位)和本位元組之和後所求得的CRC碼,如果我們把4位二進制序列數的CRC全部計算出來,放在一個表裡,採用查表法,每個位元組算兩次(半位元組算一次),可以在速度和內存空間取得均衡。由此不難理解下面按半位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
unsigned cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[16]={ /* CRC余式表 */
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
}
crc=0;
while(len--!=0) {
da=((uchar)(crc/256))/16; /* 暫存CRC的高四位 */
crc<<=4; /* CRC右移4位,相當於取CRC的低12位)*/
crc^=crc_ta[da^(*ptr/16)]; /* CRC的高4位和本位元組的前半位元組相加後查表計算CRC,
然後加上上一次CRC的余數 */
da=((uchar)(crc/256))/16; /* 暫存CRC的高4位 */
crc<<=4; /* CRC右移4位, 相當於CRC的低12位) */
crc^=crc_ta[da^(*ptr&0x0f)]; /* CRC的高4位和本位元組的後半位元組相加後查表計算CRC,
然後再加上上一次CRC的余數 */
ptr++;
}
return(crc);
}
[code]
5 結束語
以上介紹的三種求CRC的程序,按位求法速度較慢,但佔用最小的內存空間;按位元組查表求CRC的方法速度較快,但佔用較大的內存;按半位元組查表求CRC的方法是前兩者的均衡,即不會佔用太多的內存,同時速度又不至於太慢,比較適合8位小內存的單片機的應用場合。以上所給的C程序可以根據各微處理器編譯器的特點作相應的改變,比如把CRC余式表放到程序存儲區內等。[/code]
hjzgq 回復於:2003-05-15 14:12:51
CRC32演算法學習筆記以及如何用java實現 出自:csdn bootcool 2002年10月19日 23:11 CRC32演算法學習筆記以及如何用java實現
CRC32演算法學習筆記以及如何用java實現
一:說明
論壇上關於CRC32校驗演算法的詳細介紹不多。前幾天偶爾看到Ross N. Williams的文章,總算把CRC32演算法的來龍去脈搞清楚了。本來想把原文翻譯出來,但是時間參促,只好把自己的一些學習心得寫出。這樣大家可以更快的了解CRC32的主要思想。由於水平有限,還懇請大家指正。原文可以訪問:http://www.repairfaq.org/filipg/LINK/F_crc_v31.html 。
二:基本概念及相關介紹
2.1 什麼是CRC
在遠距離數據通信中,為確保高效而無差錯地傳送數據,必須對數據進行校驗即差錯控制。循環冗餘校驗CRC(Cyclic Rendancy Check/Code)是對一個傳送數據塊進行校驗,是一種高效的差錯控制方法。
CRC校驗採用多項式編碼方法。多項式乘除法運算過程與普通代數多項式的乘除法相同。多項式的加減法運算以2為模,加減時不進,錯位,如同邏輯異或運算。
2.2 CRC的運算規則
CRC加法運算規則:0+0=0
0+1=1
1+0=1
1+1=0 (注意:沒有進位)
CRC減法運算規則:
0-0=0
0-1=1
1-0=1
1-1=0
CRC乘法運算規則:
0*0=0
0*1=0
1*0=0
1*1=1
CRC除法運算規則:
1100001010 (注意:我們並不關心商是多少。)
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
10011,.,,....
10011,.,,....
-----,.,,....
00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
-----,....
01011....
00000....
-----....
10110...
10011...
-----...
01010..
00000..
-----..
10100.
10011.
-----.
01110
00000
-----
1110 = 余數
2.3 如何生成CRC校驗碼
(1) 設G(X)為W階,在數據塊末尾添加W個0,使數據塊為M+ W位,則相應的多項式為XrM(X);
(2) 以2為模,用對應於G(X)的位串去除對應於XrM(X)的位串,求得余數位串;
(3) 以2為模,從對應於XrM(X)的位串中減去余數位串,結果就是為數據塊生成的帶足夠校驗信息的CRC校驗碼位串。
2.4 可能我們會問那如何選擇G(x)
可以說選擇G(x)不是一件很容易的事。一般我們都使用已經被大量的數據,時間檢驗過的,正確的,高效的,生成多項式。一般有以下這些:
16 bits: (16,12,5,0) [X25 standard]
(16,15,2,0) ["CRC-16"]
32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]
三: 如何用軟體實現CRC演算法
現在我們主要問題就是如何實現CRC校驗,編碼和解碼。用硬體實現目前是不可能的,我們主要考慮用軟體實現的方法。
以下是對作者的原文的翻譯:
我們假設有一個4 bits的寄存器,通過反復的移位和進行CRC的除法,最終該寄存器中的值就是我們所要求的余數。
3 2 1 0 Bits
+---+---+---+---+
Pop <-- | | | | | <----- Augmented message(已加0擴張的原始數據)
+---+---+---+---+
1 0 1 1 1 = The Poly
(注意: The augmented message is the message followed by W zero bits.)
依據這個模型,我們得到了一個最最簡單的演算法:
把register中的值置0.
把原始的數據後添加r個0.
While (還有剩餘沒有處理的數據)
Begin
把register中的值左移一位,讀入一個新的數據並置於register的0 bit的位置。
If (如果上一步的左移操作中的移出的一位是1)
register = register XOR Poly.
End
現在的register中的值就是我們要求的crc余數。
我的學習筆記:
可為什麼要這樣作呢?我們從下面的實例來說明:
1100001010
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
-》 10011,.,,....
10011,.,,....
-----,.,,....
-》 00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
我們知道G(x)的最高位一定是1,而商1還是商0是由被除數的最高位決定的。而我們並不關心商究竟是多少,我們關心的是余數。例如上例中的G(x)有5 位。我們可以看到每一步作除法運算所得的余數其實就是被除數的最高位後的四位於G(x)的後四位XOR而得到的。那被除數的最高位有什麼用呢?我們從打記號的兩個不同的余數就知道原因了。當被除數的最高位是1時,商1然後把最高位以後的四位於G(x)的後四位XOR得到余數;如果最高位是0,商0然後把被除數的最高位以後的四位於G(x)的後四位XOR得到余數,而我們發現其實這個余數就是原來被除數最高位以後的四位的值。也就是說如果最高位是0就不需要作XOR的運算了。到這我們總算知道了為什麼先前要這樣建立模型,而演算法的原理也就清楚了。
以下是對作者的原文的翻譯:
可是這樣實現的演算法卻是非常的低效。為了加快它的速度,我們使它一次能處理大於4 bit的數據。也就是我們想要實現的32 bit的CRC校驗。我們還是假設有和原來一樣的一個4 "bit"的register。不過它的每一位是一個8 bit的位元組。
3 2 1 0 Bytes
+----+----+----+----+
Pop <-- | | | | | <----- Augmented message
+----+----+----+----+
1<------32 bits------> (暗含了一個最高位的「1」)
根據同樣的原理我們可以得到如下的演算法:
While (還有剩餘沒有處理的數據)
Begin
檢查register頭位元組,並取得它的值
求不同偏移處多項式的和
register左移一個位元組,最右處存入新讀入的一個位元組
把register的值和多項式的和進行XOR運算
End
我的學習筆記:
可是為什麼要這樣作呢? 同樣我們還是以一個簡單的例子說明問題:
假設有這樣的一些值:
當前register中的值: 01001101
4 bit應該被移出的值:1011
生成多項式為: 101011100
Top Register
---- --------
1011 01001101
1010 11100 + (CRC XOR)
-------------
0001 10101101
首4 bits 不為0說明沒有除盡,要繼續除:
0001 10101101
1 01011100 + (CRC XOR)
-------------
0000 11110001
^^^^
首4 bits 全0說明不用繼續除了。
那按照演算法的意思作又會有什麼樣的結果呢?
1010 11100
1 01011100+
-------------
1011 10111100
1011 10111100
1011 01001101+
-------------
0000 11110001
現在我們看到了這樣一個事實,那就是這樣作的結果和上面的結果是一致的。這也說明了演算法中為什麼要先把多項式的值按不同的偏移值求和,然後在和 register進行異或運算的原因了。另外我們也可以看到,每一個頭位元組對應一個值。比如上例中:1011,對應01001101。那麼對於 32 bits 的CRC 頭位元組,依據我們的模型。頭8 bit就該有 2^8個,即有256個值與它對應。於是我們可以預先建立一個表然後,編碼時只要取出輸入數據的頭一個位元組然後從表中查找對應的值即可。這樣就可以大大提高編碼的速度了。
+----+----+----+----+
+-----< | | | | | <----- Augmented message
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+-----> +----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
以下是對作者的原文的翻譯:
上面的演算法可以進一步優化為:
1:register左移一個位元組,從原始數據中讀入一個新的位元組.
2:利用剛從register移出的位元組作為下標定位 table 中的一個32位的值
3:把這個值XOR到register中。
4:如果還有未處理的數據則回到第一步繼續執行。
用C可以寫成這樣:
r=0;
while (len--)
r = ((r << | p*++) ^ t[(r >> 24) & 0xFF];
可是這一演算法是針對已經用0擴展了的原始數據而言的。所以最後還要加入這樣的一個循環,把W個0加入原始數據。
我的學習筆記:
注意不是在預處理時先加入W個0,而是在上面演算法描述的循環後加入這樣的處理。
for (i=0; i<W/4; i++)
r = (r << ^ t[(r >> 24) & 0xFF];
所以是W/4是因為若有W個0,因為我們以位元組(8位)為單位的,所以是W/4個0 位元組。注意不是循環w/8次
以下是對作者的原文的翻譯:
1:對於尾部的w/4個0位元組,事實上它們的作用只是確保所有的原始數據都已被送入register,並且被演算法處理。
2:如果register中的初始值是0,那麼開始的4次循環,作用只是把原始數據的頭4個位元組送入寄存器。(這要結合table表的生成來看)。就算 register的初始值不是0,開始的4次循環也只是把原始數據的頭4個位元組把它們和register的一些常量XOR,然後送入register中。
3A xor B) xor C = A xor (B xor C)
總上所述,原來的演算法可以改為:
+-----<Message (non augmented)
|
v 3 2 1 0 Bytes
| +----+----+----+----+
XOR----<| | | | |
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+----->+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
演算法:
1:register左移一個位元組,從原始數據中讀入一個新的位元組.
2:利用剛從register移出的位元組和讀入的新位元組XOR從而產生定位下標,從table中取得相應的值。
3:把該值XOR到register中
4:如果還有未處理的數據則回到第一步繼續執行。
我的學習筆記:
對這一演算法我還是不太清楚,或許和XOR的性質有關,懇請大家指出為什麼?
謝謝。
到這,我們對CRC32的演算法原理和思想已經基本搞清了。下章,我想著重根據演算法思想用java語言實現。
hjzgq 回復於:2003-05-15 14:14:51
數學演算法一向都是密碼加密的核心,但在一般的軟路加密中,它似乎並不太為人們所關心,因為大多數時候軟體加密本身實現的都是一種編程上的技巧。但近幾年來隨著序列號加密程序的普及,數學演算法在軟體加密中的比重似乎是越來越大了。
我們先來看看在網路上大行其道的序列號加密的工作原理。當用戶從網路上下載某個Shareware -- 共享軟體後,一般都有使用時間上的限制,當過了共享軟體的試用期後,你必須到這個軟體的公司去注冊後方能繼續使用。注冊過程一般是用戶把自己的私人信息(一般主要指名字)連同信用卡號碼告訴給軟體公司,軟體公司會根據用戶的信息計算出一個序列碼出來,在用戶得到這個序列碼後,按照注冊需要的步驟在軟體中輸入注冊信息和注冊碼,其注冊信息的合法性由軟體驗證通過後,軟體就會取消掉本身的各種限制。這種加密實現起來比較簡單,不需要額外的成本,用戶購買也非常方便,在網上的軟體80%都是以這種方式來保護的。
我們可以注意到軟體驗證序列號的合法性過程,其實就是驗證用戶名與序列號之間的換算關系是否正確的過程。其驗證最基本的有兩種,一種是按用戶輸入的姓名來生成注冊碼,再同用戶輸入的注冊碼相比較,公式表示如下:
序列號 = F(用戶名稱)
Ⅳ 如何確保數據,信息的准確性,完整性,可靠性,及時性,安全性和保密性
數據完整性(Data Integrity)是
指數據的精確性(Accuracy) 和可靠性(Reliability)。它是應防止資料庫中存在不符合語義規定的數據和防止因錯誤信息的輸入輸出造成無效操作或錯誤信息而提出的。數據完整性分為四類:實體完整性(Entity Integrity)、域完整
性(Domain Integrity)、參照完整性(Referential Integrity)、用戶定義的完整性(User-definedIntegrity)。
保證數據的完整性:
用約束而非商務規則強制數據完整性
如果你按照商務規則來處理需求,那麼你應當檢查商務層次/用戶界面:如果商務規則以後發生變化,那麼只需要進行更新即可。
假如需求源於維護數據完整性的需要,那麼在資料庫層面上需要施加限制條件。
如果你在數據層確實採用了約束,你要保證有辦法把更新不能通過約束檢查的原因採用用戶理解的語言通知用戶界面。除非你的欄位命名很冗長,否則欄位名本身還不夠。 — Lamont Adams
只要有可能,請採用資料庫系統實現數據的完整性。這不但包括通過標准化實現的完整性而且還包括數據的功能性。在寫數據的時候還可以增加觸發器來保證數據的正確性。不要依賴於商務層保證數據完整性;它不能保證表之間(外鍵)的完整性所以不能強加於其他完整性規則之上。
— Peter Ritchie
2. 分布式數據系統
對分布式系統而言,在你決定是否在各個站點復制所有數據還是把數據保存在一個地方之前應該估計一下未來5 年或者10 年的數據量。當你把數據傳送到其他站點的時候,最好在資料庫欄位中設置一些標記。在目的站點收到你的數據之後更新你的標記。為了進行這種數據傳輸,請寫下你自己的批處理或者調度程序以特定時間間隔運行而不要讓用戶在每天的工作後傳輸數據。本地拷貝你的維護數據,比如計算常數和利息率等,設置版本號保證數據在每個站點都完全一致。
— Suhair TechRepublic
3. 強制指示完整性
沒有好辦法能在有害數據進入資料庫之後消除它,所以你應該在它進入資料庫之前將其剔除。激活資料庫系統的指示完整性特性。這樣可以保持數據的清潔而能迫使開發人員投入更多的時間處理錯誤條件。
— kol
4. 關系
如果兩個實體之間存在多對一關系,而且還有可能轉化為多對多關系,那麼你最好一開始就設置成多對多關系。從現有的多對一關系轉變為多對多關系比一開始就是多對多關系要難得多。
— CS Data Architect
5. 採用視圖
為了在你的資料庫和你的應用程序代碼之間提供另一層抽象,你可以為你的應用程序建立專門的視圖而不必非要應用程序直接訪問數據表。這樣做還等於在處理資料庫變更時給你提供了更多的自由。
— Gay Howe
6. 給數據保有和恢復制定計劃
考慮數據保有策略並包含在設計過程中,預先設計你的數據恢復過程。採用可以發布給用戶/開發人員的數據字典實現方便的數據識別同時保證對數據源文檔化。編寫在線更新來「更新查詢」供以後萬一數據丟失可以重新處理更新。
— kol
7. 用存儲過程讓系統做重活
解決了許多麻煩來產生一個具有高度完整性的資料庫解決方案之後,我所在的團隊決定封裝一些關聯表的功能組,提供一整套常規的存儲過程來訪問各組以便加快速度和簡化客戶程序代碼的開發。在此期間,我們發現3GL 編碼器設置了所有可能的錯誤條件,比如以下所示:
SELECT Cnt = COUNT (*)
FROM [<Table>]
WHERE [<primary key column>] = <new value>
IF Cnt = 0
BEGIN
INSERT INTO [<Table>]
( [< primary key column>] )
VALUES ( <New value> )
ELSE
BEGIN
<indicate plication error>
而一個非3GL 編碼器是這樣做的:
INSERT INTO [<Table>]
( [< primary key column>] )
VALUES
( <New value> )
IF @@ERROR = 2627 -- Literal error code for Primary Key Constraint
BEGIN
<indicate plication error>
第2 個程序簡單多了,而且事實上,利用了我們給資料庫的功能。雖然我個人不喜歡使用嵌入文字(2627)。但是那樣可以很方便地用一點預先處理來代替。資料庫不只是一個存放數據的地方,它也是簡化編碼之地。
— a-smith
8. 使用查找
控制數據完整性的最佳方式就是限制用戶的選擇。只要有可能都應該提供給用戶一個清晰的價值列表供其選擇。這樣將減少鍵入代碼的錯誤和誤解同時提供數據的一致性。某些公共數據特別適合查找:國家代碼、狀態代碼等
Ⅵ 如何判斷互聯網金融公司的可靠性
目前網上投資理財平台很多,但是要從安全的角度判斷哪家投資理財比較好
1、 注冊資本
注冊資本在一定程度呈現一家公司的實力,現在1000萬以下的強烈不建議投資;
2、平台是否自融
這個就不多說了,例如現在跑路或倒閉的平台絕大部分都是有自融的情況,一旦平台出現自融就可能很危險了。平台出現自融,代表平台的盈利和資金是不足以來經營平台。這個時候是該撤離平台了。
3、項目收益率、期限
高收益、長期限一般不要投,目前行業平均收益率在10%左右,收益過高,平台承擔的資金壓力和風險就比較大,期限也是一樣,一般投資期限控制在一年以內即可;
4、管理團隊
平台的管理團隊是覺得平台風控實力的決定性因素,這個最好是自己實地考察,看看平台的人員的整體素質以及相關的專業程度怎樣。
5、風險控制實力
毫無疑問!第一位當然是平台的風險控制實力,作為一個P2P平台,如果風險控制實力不夠,壞賬率一旦上昇平台等著的就只有倒閉或跑路。這是公司的核心,也是P2P平台的命脈。
業務模式
目前有一些平台於第三方擔保公司合作開展業務,這種業務模式給人的感覺可能是最安全的。
總而言之,審核嚴格、公開透明是最好的。風險集中爆發的可能性小、收益穩定、資金使用靈活。目前推薦的平台:網籌金融。
Ⅶ mydisktest數據完整性校驗
淘寶的內存卡和u盤很多都是擴容的,用完整性校驗看一下,只要顯示一次是擴容盤我感覺真的肯能行不大
Ⅷ CRC校驗為什麼能夠保證數據的准確性(出錯率很低很低)
你要搞清楚,CRC說到底只是校驗碼而已,能夠以比較高的精度檢測出一個二進制串中出現的錯誤(檢測能力也不是100%的)。CRC校驗並不能降低數據傳輸過程中的出錯率……
其原理簡單來說,就是將一個數字串A除以特定的除數B,把余數C加在數字串的末尾形成AC,那麼這個數字串AC就應當能被B整除。如果不能整除則說明接收到的字元串AC是不正確的。
以十進制舉個簡單(但絲毫不嚴謹)的例子:我們要發送12345678這個數字串,除以11後余數是4,所以實際傳輸123456784這個數字串;接收端收到以後除以11能夠整除,說明收到的數字串是沒有問題的,於是可以放心地從裡面把12345678這個數字串提取出來。
Ⅸ 如何驗證數據准確性(校驗碼的計算)
*hhhh 是校驗碼 #~*之間的校驗和 希望對看到的人有用。
Ⅹ 數據完整性校驗有什麼用
聽名稱就能看出來了。網路傳送時因為這樣那樣的原因導致數據丟失或者是損壞,對於精度要求不高的還好,對於那些重要文件等就需要檢驗文件是否完成,以免造成損失。