㈠ 大數據在金融領域有何應用
你好!大數據在當今社會任何一個領域都有很大用處,比如金融領域,這樣可以通過大數據幫助投資者投資
㈡ 誰能給提供一些金融行業的大數據應用案例
在網路文庫搜到相關的應用案列,希望可以幫到你:Aleiye證券行業大數據解決方案
在文庫搜到幾個相關的應用案例,希望可以幫到你,因為不能放鏈接,只給標題了:Aleiye證券行業大數據解決方案,aleiye北京銀行大數據解決方案。
㈢ 「大數據」時代金融統計在商業銀行營銷中的應用研究
大數據是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時版性。在企業對權企業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和/或虛擬化技術。大數據的意義是由人類日益普及的網路行為所伴生的,受到相關部門、企業採集的,蘊含數據生產者真實意圖、喜好的,非傳統結構和意義的數據 。
㈣ 大數據在金融業的應用可以發揮哪些作用
有了大數據,自然就要有大數據技術,即從各種各樣類型的巨量數據中,快速獲取有價值信息版的技術,強調權快,這是大數據技術與傳統數據挖掘技術的重要區別。
從巨量數據中提取的有價值信息,即是大數據在各個領域的具體運用,比如基於大數據進行客群的細分,進而提供定製化服務;基於大數據模擬現實環境,進而進行精準評估和預測;基於大數據進行產品和模式創新,降低業務成本、提升經營效率等等。
㈤ 金融行業中的大數據應用有哪些方面
金融行業會運用到很多大數據,從投資結構上來看,銀行將會成為金融類企業中的重要部分,證券和報表分列第二和第三位。國內不少銀行已經開始嘗試通過大數據來驅動業務運營,如中信銀行信用卡中心使用大數據技術實現了實時營銷,廣大銀行建立了社交網路信息資料庫,招商銀行則利用大數據發展小微貸款等等。我這邊常會涉及到的大數據應用工具有finereport報表工具。
㈥ 大數據技術在金融行業有哪些應用前景
當前中國金融行業仍處於較好的發展時期,中國經濟社會發展基本面長期趨好,國內市場潛力巨大,這為金融行業發展創造了難得的機遇。
前瞻產業研究院發布的《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
㈦ 金融大數據平台應該如何搭建及應用是否有金融案例可以借鑒的
金融大數據平台的搭建和應用是兩個部分,對於金融大數據平台來說,這兩個部分都很重要。所以以下的部分我們從大數據平台和銀行可以分析哪些指標這兩個角度來闡述。
大數據平台的整體架構可以由以下幾個部分組成:
1.一個客戶
客戶主題:客戶屬性(客戶編號、客戶類別)、指標(資產總額、持有產品、交易筆數、交易金額、RFM)、簽約(渠道簽約、業務簽約)組成寬表
2.做了一筆交易
交易主題:交易金融屬性、業務類別、支付通道組成寬表。
3.使用哪個賬戶
賬戶主題:賬戶屬性(所屬客戶、開戶日期、所屬分行、產品、利率、成本)組成寬表
4.通過什麼渠道
渠道主題:
渠道屬性、維度、限額組成寬表
5.涉及哪類業務&產品
產品主題:產品屬性、維度、指標組成寬表
鑒於篇幅問題,此處可以參考這篇文章:
華夏銀行:大數據技術服務業務需求,實現銷售高速增長
㈧ 大數據技術在金融行業有哪些應用前景
經過多年的發展與積累,金融領域已具備海量數據,正在步入大數據時代的初級階段,因此金融大數據正受到銀行、保險、證券企業的追捧。隨著大數據技術的完善,大數據在金融領域發揮的作用將越來越大,在應用廣度和深度上還有很大的進步空間,金融大數據發展勢頭強勁。
金融領域具備海量數據,非常適合與大數據技術相結合,因此金融大數據正受到銀行、保險、證券企業的追捧。通過互聯網、雲計算等信息技術來處理海量數據,從而更好地了解客戶、創新服務。
目前,金融行業主要如信用卡、防欺詐、電子支付業務等,對大數據有比較大的需求。因此,隨著金融行業大數據應用的加強已經深入,前瞻產業研究院預計,到2017-2022年,金融行業大數據應用市場規模年均復合增長率為55.21%,到2022年,中國金融行業大數據應用市場規模為497億元。
不過,金融大數據還面臨著不少阻礙,如內部各業務間存在信息孤島現象、外部大數據整合難度大等。相信在大數據起到更大效果時,金融大數據的推進不會太大問題,未來前景廣闊。
㈨ 金融大數據應用面臨哪些風險
1.金融科技巨頭可能產生數據壟斷
一些金融科技巨頭憑借其在互聯網領域的固有優勢,掌握了大量數據,客觀上可能會產生數據寡頭的現象,可能會帶來數據壟斷。一些機構掌握了核心的信用數據資源,由於缺乏分享的激勵機制,導致與徵信的共享理念存在沖突。
2.存在數據孤島現象,數據融合困難
政府和企業都面臨數據孤島難題。大數據時代,數據已經成為核心資源,企業出於保護商業機密或者節約數據整理成本的考慮而不願意共享自身數據,一些政府部門也缺乏數據公開的動力。數據孤島現象的存在,將導致大數據信用評估模型採用的數據維度和演算法的不同,大數據徵信模型的公信力和可比性容易遭到質疑。
3.數據安全和個人隱私保護難度升級
目前,大數據的獲取大致有四種方法:自有平台積累、通過交易或合作獲取、通過技術手段獲取、用戶自己提交的數據等。但是由於相關的法律法規體系尚不健全,數據交易存在許多不規范的地方,甚至出現數據非法交易和盜取信息的現象。大數據來源復雜多樣加大了用戶隱私泄露的風險,其一,我國金融大數據行業的發展乃至Fintech行業的發展,在很大程度上得益於互聯網應用場景的發展,而大數據從互聯網應用場景向金融領域的轉移往往發生在一些金融科技企業的集團內部,這個過程缺乏監管和規范,可能會侵犯到用戶的知情權、選擇權和隱私權。其二,應用數據存在多重交易和多方接入的可能性,隱私數據保護的邊界不清晰;其三,技術手段的加入,加大了信息獲取的隱蔽性,一旦出現隱私泄露糾紛,用戶將面臨取證難、訴訟難的問題;其四,大數據採集數據的標准不一,用戶的知情權、隱私權可能受到侵犯。可見,在大數據環境下,個人數據應用的隱私保護是一個復雜的消費者權益保護問題,涉及到道德、法律、技術等諸多領域。