① 互聯網金融未來的前景如何
雖然互聯網金融來已經不再是新鮮事自物,但互聯網金融日新月異的發展令人們長期對其保持著新鮮感。受眾們之所以不會對互聯網金融感到疲倦,主要來源於兩方面的原因。第一是互聯網金融產業的不斷創新,例如從最先被人們知曉的網路借貸平台到科技金融、大數據金融、消費金融、普惠金融等,令互聯網金融始終保持著新鮮感;第二是存活下來的互聯網金融公司十分注重用戶體驗,通過各種模式為用戶創造便利、營造場景,增強用戶粘性。
上述兩點也符合產品以及企業的成長周期,人們也往往只會關注成長、成熟的周期,而不會關注衰退期。與傳統產業不同,互聯網金融企業或產品如能不斷創新、不斷迎合重要用戶的客戶體驗,就將長期處於發展期,令企業和產品在發展中長青,強勢的互聯網金融企業正是這樣做的,這也是互聯網金融未來發展的趨勢。
結合市場實際環境以及金融因素,互聯網金融在經過探索發展後,未來的發展趨勢主要會集中在政策監管以及行業規范化、服務社會實體產業、業務模式專業化及小額化、新技術的不斷更迭這四大方面。
② 大數據金融是不是互聯網金融
大數據並不是單指互聯網金融。
大數據金融是指依託於海量、非結構化的數據,通過互聯網、雲計算等信息化方式對其數據進行專業化的挖掘和分析,並與傳統金融服務相結合,創新性開展相關資金融通工作的統稱。
大數據金融擴充了金融業的企業種類,不再是傳統金融獨大,並創新了金融產品和服務,擴大了客戶范圍,降低了企業成本。大數據金融按照平台運營模式,可分為平台金融和供應鏈金融兩大模式。兩種模式代表企業分別為阿里金融和京東金融。
互聯網金融行業面臨大洗牌
在去杠桿的嚴監管的大背景下,近期信用風險事件頻頻爆發,根據網貸之家的數據顯示,自6月以來,P2P行業新增問題平台133家,其中95家發布了相關逾期或停業兌付公告。
違約事件頻發的主要原因1)隨著市面上資金收緊,一些資質較差的企業出現債務違約,影響到相關P2P平台2)一些產品不合規、風控能力較差的平台,高返利的平台受到資金收緊的影響資金鏈斷裂3)P2P平台頻繁暴雷,引發投資者恐慌性擠兌,一些運營良好的P2P平台受到波及導致兌付困難。
短期來看行業集中暴雷會導致行業承壓,另一方面隨著不良企業出清,風控良好、經營合規的頭部互金公司有望迎來快速發展,互聯網金融企業能夠服務一些傳統金融機構難以觸及的領域作為傳統金融機構有效補充,隨著百行徵信建立,徵信體系的逐漸完善,預計行業風控能力將顯著提升,重點關注行業頭部企業
③ 在哪兒可以找到互聯網金融的行業數據
前瞻產業研究院 提供的《2015-2020年中國互聯網金融行業市場前瞻與投資戰略規劃分析報專告》顯示,截止至屬2014年底,我國互聯網金融市場規模已經突破10萬億元。以P2P業態為例,過去5年中,各類P2P平台都獲得了年均超過250%的爆發式增長。
不過,作為新興行業,互聯網金融問題不容忽視。互聯網金融的安全風險也日益加劇。仍以P2P業態為例,數據顯示,2015年上半年我國問題P2P平台數量為273家,數量超過2014年問題P2P平台數總和,今年以來,P2P網路貸款平台出現跑路或提現困難的公司更是高達677家。
④ 互聯網金融運營需要關注的數據有哪些
如果您是做汽車金融行業的互聯網金融平台,您需要關注的有三個模塊大數據,有助於風控的運營管理。
1.人的大數據。藉助大數據風控管理分析平台,建立大數據反欺詐系統,從貸前、貸中、貸後各個階段進行有效的防範欺詐風險。從賬號風險防護、應用風險防護、欺詐信用風險防護等方面,有效識別騙貸、黑名單欺詐等手段,減少資金損失。對客戶行為從源頭進行風險評估,通過客戶在網路渠道留下的聯系方式開始,就啟動整個風控的過程,關聯客戶關鍵信息(如地址、電話號碼、聯系人信息等),從申請環節到授信環節藉助反欺詐系統降低有效反欺詐風險。
2.車輛鑒定大數據。二手車由於其非標准化運營,涉及到車輛評估,對車輛價值進行准確判斷才能在放款上不會出現「亂放」現象。通過第三方車輛評估鑒定,上傳車輛信息,對車輛查檔、估值、違章查詢、車史報告、VIN碼解析等等信息掌握。為汽車金融公司提供二手車數據內容、數據管理、二手車估值、數據挖掘等解決方案。
3.車輛監控大數據。通過行業第三方貸後雲風控平台的監控,呈現車輛的日常行為軌跡,利用監控平台的大數據預警信息,密切掌握借款人的動向。通過建立風控模型,針對借款人的貸後車輛行為,通過豐富的預警機制,可以科學的預測整個周期內的風險。根據車輛停留點分析、常用地址比對、敏感區域資料庫等大數據分析,對車貸行業的功能場景進行針對性設計,能有效的遏制資料欺詐、二次抵押等不良現象發生。可幫助汽車金融公司建立完整的貸後風控管理體系。
⑤ 如何進行互聯網金融運營數據的分析
做運營必須要對數據敏感,以下指標需要關註:
1、用戶注冊數,首先你要知內道你的注冊數據
2、注容冊成本,就是單個用戶成功注冊的成本
3、投資成本,就是注冊用戶到投資的成本
4、復投率,這個很重要,投資人數再多,如果沒有復投意義不大,因為拉新的成本比留住老用戶要大的多。
5、ROI,其實說了這么多,企業管理者就看重一個指標就是投資回報率,衡量一個推廣渠道的優劣,這個是核心指標
知道了哪個渠道的ROI最高,就可以對你的推廣策略做參考,這樣就能形成良性循環。
⑥ 互聯網金融的趨勢有哪些
互聯網金融即基於互聯網技術的金融業務。互聯網技術不僅改善了金融業務發展的基礎環境,同時也衍生出了新的金融服務方式,引起金融生態和資源配置方式的變化,從而也帶來一系列風險與控制的新課題。
作為近幾年成長最快的一個行業,新金融領域中的領軍企業,不管是業務規模、還是發展程度都到了邁入資本市場的階段。只是眼下,不管是上市地點的選擇還是商業模式的合規性、資本的認可程度等,都存在諸多不確定性。綜合分析來看,中國互聯網金融行業發展有如下趨勢:
趨勢一、互聯網金融加速向縱深發展,行業調整仍將持續,服務實體經濟成為互聯網金融企業持續發展的戰略基石。
趨勢二、互聯網金融政策規范將初步確立,監管套利空間逐漸縮小,金融消費者權益保護得到空前重視。
趨勢三、各路資本紛紛布局國內互聯網金融,互聯網金融平台將迎來上市熱潮。
趨勢四、互聯網金融生態戰略或成主流,數據資產成為未來互聯網金融發展的核心優勢。
趨勢五、移動支付發展迅猛,支付去現鈔化趨勢更加顯著,第三方支付企業面臨商業模式重構。
趨勢六、P2P 進入兼並重組期,數據和垂直行業定位成為獲得行業競爭優勢的關鍵因素,大型平台向財富管理方向轉型。
趨勢七、互聯網保險異軍突起,結合大數據技術產品創新層出不窮,「相互保險」即將開閘。
趨勢八、「供給側改革」政策利好,消費金融爆發在即,場景和流量成為核心競爭力。
趨勢九、眾籌監管思路進一步明確,行業趨向規范發展,眾籌發展駛入快車道。
趨勢十、互聯網金融人才培養加速,百萬人才缺口有望得到緩解。
⑦ 互聯網金融的未來發展趨勢分析
市場規模實現較快增長
近年來,國內汽車消費需求的日益旺盛,汽車行業供應鏈上各方的金融需求不斷提升,互聯網汽車金融市場規模逐年增大。統計數據顯示,2018年,我國互聯網汽車金融的市場規模為3566.3億元,2019年,中國互聯網+汽車金融市場規模約4438.4億元左右。
——更多數據來請參考前瞻產業研究院《中國汽車金融行業市場前瞻與投資戰略規劃分析報告》。
⑧ 金融行業大數據怎麼玩
任何數據分析的前提是首先要理解業務模型,從你的金融數據是怎麼產生的,包括哪些指標哪些數據,你的分析是要為什麼業務服務的,也就是你的目的。比如你分析金融數據的目的是要找出最有價值的金融產品,還是最有價值的客戶,還是尋找最有效的成...
在企業信息化建設及互聯網行業的發展過程中,數據量的增長已經達到了前所未有的速度。廠商、分析師以及技術專家認為「大數據」(Big Data)時代已經到來,針對大數據的相關技術已經被IT部門提上了議事日程。除了如何存儲管理大數據,更為重要的問題...
在金融領域大數據用的好還是很不錯的。比如收集股民的投資信息就可以知道大眾的投資走向,你就可以關注這些行業。
實質是資源共享,為單一客戶提供綜合金融服務,說白了就是充分挖掘客戶家底。
大數據對金融行業的影響有很多方面吧,目前大數據的來源主要包括瀏覽、購買、搜索、關注、社交的用戶行為。對於金融行業來說最基本的影響就是對用戶的畫像更加精準了,傳統的數據如年齡職業住址聯系電話等信息自然不在話下,更重要的是對於用戶...
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。 有人把數據比喻為蘊 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大...
說到運用啊,樓主你知道「信誠人壽悅生活愛家行動」活動不,就是和堂傳媒運用了多屏互動手段和大數據手段。以40000+的有效用戶數據打破如今互聯網金融行業營銷記錄,也開創了大數據等技術運用的先河,可牛啦。
讓每一條查詢的關聯度提高,讓每一條查詢的相似查詢結果智能化顯示,人性化的羅列每一次查詢可能對應的結果,比搜索更貼心; 金融業的利率差將會更加復合資本的運作規律:行政化的切割線將會被套利資本沖垮、淹沒,收益率劃分的利率差切割線將會...
:)在我們的生活中,所有人都在製造和分享數據——但並非所有數據都能得到合理使用。這種數據缺乏帶來的信息不對稱,導致了金融行業中「二八定律」的出現。二八定律:在當前利率非完全市場化與小微企業抵押擔保品欠缺的情況下,採用傳統信貸技術從...
大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向
⑨ 如何進行互聯網金融運營數據的分析,都有哪些方法
作者:張溪夢 Simon
鏈接:https://www.hu.com/question/29185414/answer/110954989
來源:知乎
著作權歸作者所有
我們之前做過一期互聯網金融的公開課,「互聯網金融增長寶典:三大步驟提高轉化,搞定用戶運營」,主講人是 GrowingIO 的業務增長負責人徐主峰,曾任職 Criteo、Microsoft 等公司,有豐富的電商、互聯網金融客戶解決方案經驗。 這是公開課的速記整理。
這是一篇互聯網金融寶典,我推薦給所有轉化率只有 1%、總是為誰可能是你的購買用戶而犯愁的互聯網金融的高管、PM、市場運營和銷售們。本文通過實戰案例,手把手教你建立轉化指標、 梳理分析思路、提供分析步驟並最終建立用戶行為分析模型。
文 / 徐主峰
大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?
我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。
一 、互聯網金融用戶四大行為特徵
互聯網金融平台用戶有四大行為特徵:
第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:
而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。
二、互聯網金融用戶運營的三大步驟
針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:
1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
結合典型渠道特點,可以做一個象限圖:
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。