導航:首頁 > 金融投資 > 互聯網金融市場數據分析

互聯網金融市場數據分析

發布時間:2021-07-12 12:19:53

分析目前中國金融市場的狀況

—— 以下數據及分析均來自於前瞻產業研究院《中國科技金融服務深度調研與投資戰略規劃分析報告》。

金融科技發展歷程

金融領域的科技應用可以大致分為三個階段:金融電子化、互聯網金融和金融科技。第三階段金融科技強調利用前沿技術變革業務流程,推動業務創新,突出在大規模場景下的自動化和精細化運行。

❷ 如何用大數據分析金融數據

任何數據分析的前提是首先要理解業務模型,從你的金融數據是怎麼產生的,包括回哪些指標哪些數據,你的答分析是要為什麼業務服務的,也就是你的目的。比如你分析金融數據的目的是要找出最有價值的金融產品,還是最有價值的客戶,還是尋找最有效的成本節約途徑等

在弄清楚你的分析目的,和理解清楚你的業務模式等之後,再考慮你需要採用哪些數據,採用什麼方法來進行分析,這才涉及到如何進行具體的分析過程。

從整個大數據分析來看,前期的業務理解和數據整理大概要耗費一大半的精力和時間,弄清楚前期,後期的分析則會很快。

❸ 寫一篇關於互聯網金融時代商業銀行發展路徑探究的論文 需要大量數據分析

畢業論文是教學科研過程的一個環節,也是學業成績考核和評定的一種重要方式。畢業論文的目的在於總結學生在校期間的學習成果,培養學生具有綜合地創造性地運用所學的全部專業知識和技能解決較為復雜問題的能力並使他們受到科學研究的基本訓練。
標題
標題是文章的眉目。各類文章的標題,樣式繁多,但無論是何種形式,總要以全部或不同的側面體現作者的寫作意圖、文章的主旨。畢業論文的標題一般分為總標題、副標題、分標題幾種。
總標題
總標題是文章總體內容的體現。常見的寫法有:
①揭示課題的實質。這種形式的標題,高度概括全文內容,往往就是文章的中心論點。它具有高度的明確性,便於讀者把握全文內容的核心。諸如此類的標題很多,也很普遍。如《關於經濟體制的模式問題》、《經濟中心論》、《縣級行政機構改革之我見》等。
②提問式。這類標題用設問句的方式,隱去要回答的內容,實際上作者的觀點是十分明確的,只不過語意婉轉,需要讀者加以思考罷了。這種形式的標題因其觀點含蓄,輕易激起讀者的注重。如《家庭聯產承包制就是單干嗎?》、《商品經濟等同於資本主義經濟嗎?》等。
③交代內容範圍。這種形式的標題,從其本身的角度看,看不出作者所指的觀點,只是對文章內容的范圍做出限定。擬定這種標題,一方面是文章的主要論點難以用一句簡短的話加以歸納;另一方面,交代文章內容的范圍,可引起同仁讀者的注重,以求引起共鳴。這種形式的標題也較普遍。如《試論我國農村的雙層經營體制》、《正確處理中心和地方、條條與塊塊的關系》、《戰後西方貿易自由化剖析》等。
④用判定句式。這種形式的標題給予全文內容的限定,可伸可縮,具有很大的靈活性。文章研究對象是具體的,面較小,但引申的思想又須有很強的概括性,面較寬。這種從小處著眼,大處著手的標題,有利於科學思維和科學研究的拓展。如《從鄉鎮企業的興起看中國農村的希望之光》、《科技進步與農業經濟》、《從「勞動創造了美」看美的本質》等。

❹ 如何進行互聯網金融運營數據的分析,都有哪些方法

作者:張溪夢 Simon
鏈接:https://www.hu.com/question/29185414/answer/110954989
來源:知乎
著作權歸作者所有

我們之前做過一期互聯網金融的公開課,「互聯網金融增長寶典:三大步驟提高轉化,搞定用戶運營」,主講人是 GrowingIO 的業務增長負責人徐主峰,曾任職 Criteo、Microsoft 等公司,有豐富的電商、互聯網金融客戶解決方案經驗。 這是公開課的速記整理。
這是一篇互聯網金融寶典,我推薦給所有轉化率只有 1%、總是為誰可能是你的購買用戶而犯愁的互聯網金融的高管、PM、市場運營和銷售們。本文通過實戰案例,手把手教你建立轉化指標、 梳理分析思路、提供分析步驟並最終建立用戶行為分析模型。

文 / 徐主峰

大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?

我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。

一 、互聯網金融用戶四大行為特徵

互聯網金融平台用戶有四大行為特徵:

第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:

而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。

二、互聯網金融用戶運營的三大步驟

針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:

1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
結合典型渠道特點,可以做一個象限圖:
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。

❺ 互聯網金融的未來發展趨勢分析

市場規模實現較快增長

近年來,國內汽車消費需求的日益旺盛,汽車行業供應鏈上各方的金融需求不斷提升,互聯網汽車金融市場規模逐年增大。統計數據顯示,2018年,我國互聯網汽車金融的市場規模為3566.3億元,2019年,中國互聯網+汽車金融市場規模約4438.4億元左右。



——更多數據來請參考前瞻產業研究院《中國汽車金融行業市場前瞻與投資戰略規劃分析報告》。

❻ 如何分析互聯網金融產品的大數據

軟體開發和互聯網金融都是相對飽和的了。 而隨著國家對大數據的重視,大數據分析方面的需求日益凸顯。 整體就業市場,大數據分析師處於巨大的缺口,未來各行各業對於大數據的運用必然常規化。

❼ 如何進行互聯網金融運營數據的分析

做運營必須要對數據敏感,以下指標需要關註:
1、用戶注冊數,首先你要知內道你的注冊數據
2、注容冊成本,就是單個用戶成功注冊的成本
3、投資成本,就是注冊用戶到投資的成本
4、復投率,這個很重要,投資人數再多,如果沒有復投意義不大,因為拉新的成本比留住老用戶要大的多。
5、ROI,其實說了這么多,企業管理者就看重一個指標就是投資回報率,衡量一個推廣渠道的優劣,這個是核心指標
知道了哪個渠道的ROI最高,就可以對你的推廣策略做參考,這樣就能形成良性循環。

❽ 在哪兒可以找到互聯網金融的行業數據

前瞻產業研究院 提供的《2015-2020年中國互聯網金融行業市場前瞻與投資戰略規劃分析報專告》顯示,截止至屬2014年底,我國互聯網金融市場規模已經突破10萬億元。以P2P業態為例,過去5年中,各類P2P平台都獲得了年均超過250%的爆發式增長。

不過,作為新興行業,互聯網金融問題不容忽視。互聯網金融的安全風險也日益加劇。仍以P2P業態為例,數據顯示,2015年上半年我國問題P2P平台數量為273家,數量超過2014年問題P2P平台數總和,今年以來,P2P網路貸款平台出現跑路或提現困難的公司更是高達677家。

❾ 互聯網金融好還是數據分析好不好

從技術角度、從數據類型的角度來看,大數據包括結構化數據和非結構化數據,在企業內部培養數據分析的文化和氛圍,把數據分析能夠融入到整個的業務流程裡面,在企業內部培養數據分析的文化和氛圍,要更加關注用戶的需求和市場的發展趨勢。從數據中了解用戶的真實需要,都是看數據說話的

❿ 互聯網金融 數據分析需要哪些數據

交易額,投資人數,用戶的屬性,平台的安全信息等等一系列的,你可以自己去相關的數據論壇去看看咯。

閱讀全文

與互聯網金融市場數據分析相關的資料

熱點內容
融資需要抵押嗎 瀏覽:159
匯泉投資 瀏覽:177
鉛蓄電池股票 瀏覽:883
遠東貴金屬交易中心官網 瀏覽:8
新浪外匯加元 瀏覽:258
嫣然股票 瀏覽:333
普洱一般什麼價格查詢 瀏覽:398
銀華回報的基金凈值 瀏覽:475
黃金周國外搶中國遊客 瀏覽:356
小貸想從金融機構貸款 瀏覽:462
華山參滴丸價格 瀏覽:714
中航精鑄股票 瀏覽:545
投資理財帳戶 瀏覽:792
黃金投資概述 瀏覽:578
基金是怎麼波動的 瀏覽:319
股票價格對上市公司的影響 瀏覽:120
外匯每年 瀏覽:871
新一代信息技術股票 瀏覽:478
中國十大投資理財平台排行 瀏覽:305
均值回歸外匯交易策略 瀏覽:597