導航:首頁 > 金融投資 > 互聯網金融公司排名具體數據

互聯網金融公司排名具體數據

發布時間:2020-12-27 14:07:54

互聯網金融運營需要關注的數據有哪些

如果您是做汽車金融行業的互聯網金融平台,您需要關注的有三個模塊大數據,有助於風控的運營管理。
1.人的大數據。藉助大數據風控管理分析平台,建立大數據反欺詐系統,從貸前、貸中、貸後各個階段進行有效的防範欺詐風險。從賬號風險防護、應用風險防護、欺詐信用風險防護等方面,有效識別騙貸、黑名單欺詐等手段,減少資金損失。對客戶行為從源頭進行風險評估,通過客戶在網路渠道留下的聯系方式開始,就啟動整個風控的過程,關聯客戶關鍵信息(如地址、電話號碼、聯系人信息等),從申請環節到授信環節藉助反欺詐系統降低有效反欺詐風險。
2.車輛鑒定大數據。二手車由於其非標准化運營,涉及到車輛評估,對車輛價值進行准確判斷才能在放款上不會出現「亂放」現象。通過第三方車輛評估鑒定,上傳車輛信息,對車輛查檔、估值、違章查詢、車史報告、VIN碼解析等等信息掌握。為汽車金融公司提供二手車數據內容、數據管理、二手車估值、數據挖掘等解決方案。
3.車輛監控大數據。通過行業第三方貸後雲風控平台的監控,呈現車輛的日常行為軌跡,利用監控平台的大數據預警信息,密切掌握借款人的動向。通過建立風控模型,針對借款人的貸後車輛行為,通過豐富的預警機制,可以科學的預測整個周期內的風險。根據車輛停留點分析、常用地址比對、敏感區域資料庫等大數據分析,對車貸行業的功能場景進行針對性設計,能有效的遏制資料欺詐、二次抵押等不良現象發生。可幫助汽車金融公司建立完整的貸後風控管理體系。

❷ 優秀的互聯網金融公司,是怎麼玩大數據風控的

這方面淘寶是最的最棒的,其次是騰訊做的野蠻好的,之後是網路以及內360在緊跟其後!容
說白了是你生活中只要跟消費相關的信息都收集分析,之後會有一個風險比對。、
這個就算我們知道了也做不到,但是可以藉助螞蟻芝麻信用來做驗證風控即可!

❸ 優秀的互聯網金融公司,都是怎麼玩大數據風控的

現在一提起互聯網金融行業、Fintech領域,人工智慧、大數據風控的熱度就直線飆升。許多交易規模比較大的互聯網金融公司都在努力發展大數據風控技術,以構建提供普惠金融服務的能力。
那麼,這些優秀的互聯網金融公司,都是怎麼玩大數據風控的呢?
陸金所:KYC 2.0系統
精準判斷投資者的風險承受能力
陸金所自成立起就引進國際領先的第四代風險管理系統,借鑒平安集團經驗,形成了成熟的風險管理數據模型。其近日又推出了KYC 2.0系統,力求通過大數據技術、機器學習以及金融工程等方法,建立完整的互聯網財富管理平台投資者適當性管理體系,在資金端對投資者進行「精準畫像」,並提供智能推薦服務。
據了解,KYC2.0系統在原有的保守、穩健、平衡、成長、進取五大類型基礎上對投資者風險承受力評估結果進行量化,每位用戶都會獲得專屬的風險承受能力分值,又稱「堅果財智分」,對投資者風險承受能力的判斷更精準。
點評:量化數據信息,進行大數據建模。
風控最好的數據還是金融數據,例如年齡、收入、職業、學歷、資產、負債等信用數據,這些數據同信用相關度高,可以反映用戶的還款能力和還款意願,這些數據因子在風控模型中必不可少,權重也很高,是風險評估最好的數據。
所以,陸金所以平安集團經驗為基礎運用到的大數據風控,使用的是圍繞用戶周圍的信用數據,這些數據的特點是和用戶的信用情況高度相關,可以作為一個重要因子進行錄入,對其個人進行打分,再對其進行個體分析,最終得到一個綜合評分,這就對用戶進行了一個精準的風險承受能力評判。
民貸天下:拓寬數據維度
實現純線上智能化服務
民貸天下基於穩健、安全、規范的風控理念,其風控部門確定了「風控從嚴」原則,設定了借款審查、貸中管理、貸後跟蹤等風控流程。目前,民貸天下正全力推進全智能化建設,構造一個完整的、從資產端到平台端的全鏈路大數據風控系統,通過對人工智慧、大數據分析、知識圖譜、區塊鏈等技術的運用,為平台運營及業務發展提供強大動力。
在傳統數據之外,民貸天下還不斷拓展數據維度,如在用戶授權下,對用戶社交數據、訪問時間、相關認證、通訊記錄等數據整合分析,並且與螞蟻金服、芝麻信用、前海徵信、同盾等第三方機構緊密合作,進一步豐富對用戶的數據畫像,使民貸天下的大數據風控系統更加精準,從而實現從客戶申請、受理、審核、授信、放款到貸中貸後管理等純線上智能化服務。
點評:拓寬數據維度,是對傳統風控的補充。
傳統風控模型已經不能適應復雜的現代風險管理環境,特別在數據信息錄入維度上,影響用戶信用評分的信息較多,很多都沒有引入到風險評估流程。而大數據風控可以提供全面的數據(數據的廣度),強相關數據(數據的深度),實效性數據(數據的鮮活度)。
民貸天下利用這樣的大數據風控,通過與第三方合作等方式,將內部數據以及原有數據打通和整合之後,就會影響風險評估結果,提升信用風險管理水平,客觀地反映用戶風險水平。這些多維度、全面的信息正是大數據風控的優勢所在,同時也是對傳統風控一個很好的補充,進一步實現智能化服務。
真融寶:以數據介質為主
構建數據和模型演算法的核心技術
真融寶以數據介質為主,利用分布式計算處理數據,以公眾互聯網的全網為平台,以全網收集的數據來補充內部網集成的數據。並且在用戶數據方面,對每個新進用戶建立一份電子檔案,對每名用戶投資需求進行了解登記,並對每一筆資金進行多重備份,形成動態的用戶資金數據。
除此之外,真融寶還利用大數據進行決策,將金融活動轉化為智能數據處理活動,降低人為因素的干擾,提高風險評估、分析和預警能力,大數據提供的信息使得真融寶的決策更加科學智能化,對於風控的精準度控制起到非常大的幫助作用。
點評:數據和模型演算法,可建立實時風險管理視圖。
大數據的數據採集和計算能力,可以幫助企業建立實時的風險管理視圖。藉助於全面多緯度的數據、自我學習能力的風控模型、實時計算結果、壞種子數據,真融寶可以通過大量的數據累積,能夠產生出非常有效的識別客戶的能力,提升量化風險評估能力。
數據、技術、模型、分析將成為信用風險評估的四個關鍵元素,其背後的力量就是大數據的技術和分析能力。真融寶利用大數據的風控能力,實時輸出風險因子信息,提高了風險管理的及時性。
一直以來,風控都是金融機構的生命線。從陸金所、民貸天下、真融寶這三家互聯網金融公司為例,預計在未來,可能每家做借貸類的互聯網金融公司都會發展出屬於自己的一套大數據風控體系,並且隨著互聯創業公司的業務數據越來越大,數據基礎會逐漸扎實。

❹ 互聯網金融運營需要關注的數據有哪些

互聯網金融公司正常運營要關注的問題(其實也是核心業務模式):

1、目標用戶是誰,目標用戶的分級體系?
2、提供什麼樣金融產品,金融產品的核心價值?例如收益、風險、流動性等
3、通過什麼渠道找到目標用戶?例如搜索引擎競價、微信、APP、朋友圈、渠道合作夥伴等等
4、舉辦什麼樣的營銷活動來擴大影響力,拓展新用戶、提升老用戶活躍度?
5、合作夥伴是誰?包括擔保公司、保理、信託、銀行、渠道合作等
6、怎樣進行風險控制?包括政策法規風險、項目風險、系統風險、操作風險等
7、用戶通過什麼渠道投融資(支付)?第三方支付、網銀轉賬、線下匯款、移動支付、POS等等
8、怎樣搭建NB的IT支撐平台?用戶體驗要好、系統要安全可靠穩定等等
9、怎樣服務好用戶?客服體系、運營體系等等的搭建
10、怎樣從眾多競爭對手中脫穎而出,建立品牌形象並維系好品牌形象?
針對以上問題,可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等

❺ 如何進行互聯網金融運營數據的分析,都有哪些方法

來源於:知乎
大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?
我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。
一 、互聯網金融用戶四大行為特徵
互聯網金融平台用戶有四大行為特徵:
第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:
而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
可以看到,每隔一段時間,這個用戶就會有一段集中的、大量的交互行為。當用戶購買完成後,用戶的交互行為又變得很少,可能偶爾來看看產品的收益率,但整體的交互指標不會太高,直到他下一次購買。這個用戶理財需求的周期是一個月左右。

最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。
二、互聯網金融用戶運營的三大步驟
針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:
1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
這張圖是整體轉化漏斗,從不同維度可以做對比,比如我們先選出流量前 10 的渠道:
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。

❻ 互聯網金融運營需要關注的數據有哪些

著作權歸作者所有。
商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
作者:梁川
鏈接:http://www.hu.com/question/29164071/answer/43503400
來源:知乎

由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。

備註:由於互聯網金融公司的金融屬性,從經營風險的角度來看,風險貫穿互聯網金融公司的企業日常運營、IT平台運營等過程,這與普通互聯網公司的運營主要關注產品運營有極大不同,因此以下所指的運營並不單純指普通互聯網公司的運營部門的運營,而是從整個互聯網公司企業運營角度來說的(其實也是運營人員需要關注的),姑且叫大運營吧。

不妨先看看一家互聯網金融公司正常運營要關注的問題(其實也是核心業務模式):
1、目標用戶是誰,目標用戶的分級體系?
2、提供什麼樣金融產品,金融產品的核心價值?例如收益、風險、流動性等
3、通過什麼渠道找到目標用戶?例如搜索引擎競價、微信、APP、朋友圈、渠道合作夥伴等等
4、舉辦什麼樣的營銷活動來擴大影響力,拓展新用戶、提升老用戶活躍度?
5、合作夥伴是誰?包括擔保公司、保理、信託、銀行、渠道合作等
6、怎樣進行風險控制?包括政策法規風險、項目風險、系統風險、操作風險等
7、用戶通過什麼渠道投融資(支付)?第三方支付、網銀轉賬、線下匯款、移動支付、POS等等
8、怎樣搭建NB的IT支撐平台?用戶體驗要好、系統要安全可靠穩定等等
9、怎樣服務好用戶?客服體系、運營體系等等的搭建
10、怎樣從眾多競爭對手中脫穎而出,建立品牌形象並維系好品牌形象?

針對以上問題,可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等

❼ 中國互聯網金融服務公司有幾家

互聯網金融是抄一個大概念,它包括襲幾大類:
1、各大傳統金融機構,銀行、基金、券商,都有各自的互聯網金融部門、互聯網金融產品
2、各大互聯網公司,網路、阿里、騰訊、京東,也都有各自的互聯網金融業務,而且大都成立了專門的公司。
3、還有純粹做互聯網金融的,又包括了P2P、眾籌、互聯網理財等不同的業務,此外還有專門做第三方支付、徵信平台等支持性業務的公司。

❽ 互聯網金融運營需要關注的數據有哪些

由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域 的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。

互聯網金融公司的金融屬性,從經營風險的角度來看,風險貫穿互聯網金融公司的企業日常運營、IT平台運營等過程,這與普通互聯網公司的運營主要關注產品運 營有極大不同,因此以下所指的運營並不單純指普通互聯網公司的運營部門的運營,而是從整個互聯網公司企業運營角度來說的。

根據互聯網共性可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等

運營不要只關注那些數據,數據是外在的,是基礎,而產品和平台核心競爭力才是發展的王道,數據+產品,找到平台最優的發展平衡點,才是運營下的這盤棋的目的。

❾ 互聯網金融大數據風控哪家好

北京永洪商智科技有限公司,國內領先的數據可視化分析解決方案提供商,為百億內級數據量的大型企業容和各個垂直行業的中小企業提供靈活的數據分析解決方案。專注於讓企業用戶實現敏捷的數據化運營,實時洞察業務狀況,支持戰略決策。擁有分布式計算、分布式存儲、分布式通信、雲計算、數據處理、數據展現等多項技術專利。

❿ 互聯網金融運營需要關注的數據有哪些

由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。
不妨先看看一家互聯網金融公司正常運營要關注的問題(其實也是核心業務模式):

1、目標用戶是誰,目標用戶的分級體系?
2、提供什麼樣金融產品,金融產品的核心價值?例如收益、風險、流動性等
3、通過什麼渠道找到目標用戶?例如搜索引擎競價、微信、APP、朋友圈、渠道合作夥伴等等
4、舉辦什麼樣的營銷活動來擴大影響力,拓展新用戶、提升老用戶活躍度?
5、合作夥伴是誰?包括擔保公司、保理、信託、銀行、渠道合作等
6、怎樣進行風險控制?包括政策法規風險、項目風險、系統風險、操作風險等
7、用戶通過什麼渠道投融資(支付)?第三方支付、網銀轉賬、線下匯款、移動支付、POS等等
8、怎樣搭建NB的IT支撐平台?用戶體驗要好、系統要安全可靠穩定等等
9、怎樣服務好用戶?客服體系、運營體系等等的搭建
10、怎樣從眾多競爭對手中脫穎而出,建立品牌形象並維系好品牌形象?
針對以上問題,可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等

閱讀全文

與互聯網金融公司排名具體數據相關的資料

熱點內容
雄安能源股票 瀏覽:75
招商現金增值基金匯添富貨幣基金 瀏覽:85
韓幣69000是人民幣多少 瀏覽:61
平安車保險可以貸款嗎 瀏覽:736
小米貸款網址 瀏覽:400
2013年鋼材價格 瀏覽:160
現役軍人抵押貸款 瀏覽:560
4萬日元等於多少元人民幣 瀏覽:169
融資城董事長 瀏覽:353
長城轉債價格 瀏覽:800
8歐元摺合人民幣匯率 瀏覽:623
手頭有一百萬如何投資 瀏覽:178
泰達基金公司服務熱線 瀏覽:292
抵押貸款安徽銀行 瀏覽:734
開放式基金業務規則 瀏覽:660
醫保基金智能監管中標 瀏覽:768
期貨價格周期共振 瀏覽:658
期貨入金後多久能交易 瀏覽:877
為什麼銀行不和期貨公司合作 瀏覽:67
林權項目融資 瀏覽:531