Ⅰ 什麼是量化交易,未來前景如何知道的講講。
量化交易,有時候也稱自動化交易,是指以先進的數學模型替代人為的主觀判斷,避免在專市場極屬度狂熱或悲觀的情況下做出非理性的投資決策。
在股票市場上,量化交易早不是什麼新聞,在國外,七成的交易都是通過計算機決策的,在國內這個數字也接近五成。
過去的股票市場都是靠交易員手動敲鍵盤來操作的,難免一失手成千古恨,這種行為被戲稱為「胖手指」,相比之下,量化交易則如同點石成金的「仙人指」。量化里最美的童話就是「旱澇保收」,牛市也好,熊市也罷,都能大賺特賺。
量化交易的優勢:1. 嚴格的紀律性 2. 完備的系統性 3. 妥善運用套利的思想 4. 靠概率取勝
量化交易的風險性:首先是一二級市場「級差」風險,其次是交易員操作風險,最後是系統軟體的風險。
滿意請採納答案,有不明白的可以繼續提問。
Ⅱ 什麼是量化投資,量化投資在中國的發展
量化投資是指通過數量化模型建立科學投資體系,以獲取穩定收益。在海外版的發展已有30多年權的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。在國內,量化投資不再是一個陌生的詞彙,近幾年得到了迅猛的發展。可在應用過程中學習量化投資
Ⅲ 量化投資相關的行業有哪些
我要畫投資相關的行業有哪些?你這個量化投資主要投資什麼東西?
Ⅳ 應聘量化投資工作需要哪些技術
強烈的興趣
想做好一件事情沒有興趣也只是三天打魚兩天曬網,最後不得而終,因此需要培養對投資形成強烈的興趣,每根K線的波動能夠刺激你的心臟隨之不斷跳動。
學習能力
量化交易是一門跨學科知識,必須有快速地問題解決能力和自學能力,懂得鍥而不舍不斷專研的試錯法。研究生已經具備了較好的學習能力。
編程
編程很重要,現在Python是標配,matlab、R拿來做量化的人真的不多。雖然不是做開發,但是基本的簡單編程知識還是要會。想學Python和Pandas,推薦Python基礎教程和《利用Python進行數據分析》,想學編程知識,推薦《 代碼大全 》,這本書沒有什麼代碼,不要為名字所迷惑,不過如果想成為編程高手的話,看了絕不後悔。
看書一定要經典,不經典的書簡直就是浪費生命,這三本書如果不想買,網上電子版肯定是很多的,話不多說。
量化知識
很多程序員開始轉量化,但是金融知識和量化知識不夠。經典的重要性在此顯得更為重要,編程的書籍不看經典的我也能進步,可能會慢點,但是量化金融知識不看經典的書,那麼可能就會南轅北轍,甚至影響到投資的整個生涯,不對,走偏了的話,就無生涯可談。
投資的基礎知識,比如股票債券基礎知識,先來看看滋維博迪的《投資學(原書第9版)》([美]滋維·博迪(Zvi Bodie)
再來一本干貨,很多國內外研究生教程,介紹的更多的是衍生品,約翰赫爾的《期權、期貨及其他衍生產品(原書第9版)》([加]約翰·赫爾(John C.Hull))
期權這么火,推薦 麥克米倫的《金融期貨與期權叢書:期權投資策略(原書第5版)》([美]勞倫斯 G.麥克米倫(Lawrence G.McMillan))
想知道公募基金大佬如何做股票?李騰翻譯的大作奉上,主動投資組合管理 創造高收益並控制風險的量化投資方法(原書第2版)
想知道私募基金怎麼搞交易的?交易中有哪些技巧?以及如何在量化中走彎路?推薦 范撒普的通向財務自由之路,這可不是一本關於財務分析、會計理論的書籍,真正理解了裡面的思想,資金管理、風險控制你就不會糾結。
現在中產壓力這么大,那麼多人有中年職業危機,想知道怎麼把交易當做全職?推薦 埃爾德以交易為生,他可是將自己如何轉行交易,並以交易作為自己的終身職業的心歷路程和盤托出。
英語
你可以不說英語、聽不懂英語,但最好是要看的懂英語,編程的原生環境是英語,quora、stackoverflow、github也是要求英語閱讀能力,要是想用機器學習、深度學習做量化,那麼多paperarticle都是英語,讀不懂怎麼做的好?本來是談量化入門,但好像談到量化進階了。
交易
沒有途徑,實戰是最好的方法。確實不行,模擬交易也可以。
量化交易以思想為本,工具為用,路子不能走偏。
快速迭代
類似於實驗,都是需要成千上萬反反復復的檢查、測試。在此,講到了實驗的快速開發和迭代,那麼就順便給個傳送門:BigQuant - 人工智慧量化投資平台.,人生苦短,一定要快速迭代,縮短策略開發生命周期。因為你的想法上千個,可能只有幾個有價值。
Ⅳ 了解量化投資的人談談做量化投資的前途。本人今年的應屆畢業生,數學計算機兼修,欲從事量化投資。
這個要看所在公司的層次,不知道你在什麼公司實習
現在量化投資都被叫濫了,大家都打著回量化投資的旗號,真答正能做起來的很少很少,國內市場本身的有效性不太可能支持大規模的量化投資,未來幾年仍會是這樣,量化投資仍然只能發揮花瓶的作用。當然,凡事無絕對,有個別公司還是不錯的,能做的起來,也堅持在做
Ⅵ 什麼是真正的量化投資
Ⅶ 什麼是行業量化投資分析
《行業量化投資分析:從混沌到秩序的行業演進》由鮑際剛、解宏所著,《行業量化投資分析:從混沌到秩序的行業演進》的真正意義在於向讀者提供了從物理學、復雜系統到經濟學、再到行業分析和財務分析的一系列龐大的知識體系,並在這一知識體系中構造了具有內在邏輯的相關性。這好比一串華美的珍珠項鏈,每一顆珍珠都是大師的傑作,人類思想的結晶我們是信仰理性的經濟學愛好者,雖努力研究和學習,希望能從物理學中為經濟學找到更可靠的錨定基石,但能力有限,只能知其然,不知其所以然。
Ⅷ 量化投資的前景
隨著20世紀80年代以來各類證券和期權類產品的豐富和交易量的大增,華爾街已別無選擇,不用這些模型,不使用電腦運算這些公式,他們便會陷於困境,自招風險。1997~1998年亞洲金融危機,市場暴跌,量化投資的演算法交易也起到了同樣的壞作用。此外,始於2007年的金融危機中,量化投資也未能倖免。時過境遷,2011年,量化基金再次表現優異。
稍微接觸到資本市場的人,大都聽說過基本面投資和價值投資,而對於這方面的天才人物「股神」巴菲特,更是幾乎家喻戶曉,婦孺皆知。他以企業財務報表的分析見長,擅長挖掘企業的內在價值,一旦買入便長期持有,持續獲得穩定高額收益,為股東創造了豐厚利潤,無人能及。
相比之下,與價值投資同等重要的量化投資——即藉助數學、物理學、幾何學、心理學甚至仿生學的知識,通過建立模型,進行估值、擇時及選股,則沒有那麼幸運——在大多數人眼裡,量化投資是一個神秘的領域,深不可測,玄奧無比,令人望而卻步。世人皆知巴菲特,而對於號稱最能賺錢的基金經理人、在20年的時間里創造了年均凈回報率高達35%驚人傳奇的量化投資大師西蒙斯,卻只能成為少數人的專屬。
量化投資看似神秘,但並不古老。它從70年代開始逐漸興起,90年代才大行其道。之所以如此,是因為量化投資有其誕生的特定土壤,需要一系列的條件方能破土而出,這些條件其實相當苛刻。
很難想像,量化投資技術並非發端於華爾街,而是肇始於學術象牙塔里的少數「怪才」,他們長期不被正統的經濟學所接受,甚至遭到排斥,因此處境艱難。1952年3月發表「投資組合選擇」論文、提出現代財務和投資理論最著名洞見的馬克維茨,以該理論參加博士答辯,竟然戰戰兢兢差點未獲通過。1990年10月,這些人中有三位獲得諾貝爾經濟學獎,當時局外人很少有人清楚為什麼他們能夠得此殊榮;而三人中的其中一位則將他們的獲獎比作「芝加哥業余球隊贏得了世界盃」。
但是,沒有來自象牙塔的現代金融理論,便沒有量化投資的興起。馬克維茨的投資組合理論,提出了風險報酬和效率邊界概念,並據此建立了模型,成為奠基之作。托賓隨後提出了分離理論,但仍需要利用馬克維茨的系統執行高難度的運算。
夏普1963年1月提出了「投資組合的簡化模型」,一般稱為「單一指數模型」。馬克維茨模型費時33分鍾的計算,簡化模型只用30秒,並因節省了電腦內存,可以處理相對前者8倍以上的標的證券。1964年,夏普又發展出資本資產定價模型(CAPM),這是他最重要的突破,不僅可以作為預測風險和預期回報的工具,還可以衡量投資組合的績效,以及衍生出在指數型基金、企業財務和企業投資、市場行為和資產評價等多領域的應用和理論創新。
1976年,羅斯在CAPM的基礎上,提出「套利定價理論」(APT),提供一個方法評估影響股價變化的多種經濟因素。布萊克和斯克爾斯提出了「期權定價理論」。莫頓則發明了「跨期的資本資產定價模型」。
有趣的是,不少人最初並非經濟學家,如巴契里耶和布萊克原先是數學家,夏普則從事醫學,奧斯伯恩為天文學家,沃金與坎德爾是統計學家,而特雷諾則是數學家兼物理學家。他們轉行都是被金融市場研究所深深吸引,沉迷於其中的無窮魅力。
然而,僅有現代投資(行情 股吧 買賣點)理論的建立,及各類模型的完善與推陳出新,並不會直接催生出量化投資,它還需要其他幾個重要前提條件,比如機構投資者在市場中占據主導,電腦技術足夠發達,以及傳統華爾街投資家的傲慢被市場擊潰轉而被迫接受新的投資理念。
量化投資不會出現在個人投資者為主的時代。個人投資者既缺乏閑暇的時間,也普遍無此能力。隨著退休基金和共同基金資產的大幅增加,它們成為市場上的主要機構投資者,並委託專業機構進行投資操作。管理大規模資產,需要新的運作方式和金融創新技術,同時專業的投資管理人也有能力和精力專注地研究、運用這些技術。
沒有發達的電腦技術,量化投資也將成為無源之水,無米之炊。在電腦革命發生前,根本無法根據上述模型進行運算。1961年,與馬克維茨共同獲得1990年諾貝爾獎的夏普曾說,當時即使是用IBM最好的商用電腦,解出含有100隻證券的問題也需要33分鍾。當今,面對數不勝數的證券產品,以及龐大的成交量,缺了先進電腦的運算速度和容量,許多復雜的證券定價甚至不可能完成。
量化投資在不經歷市場的崩盤,傲慢投資者的自信未被摧毀之前,不會盛行。比較早的時候,華爾街對學術界把投資管理的藝術,轉化成通篇晦澀難懂的數學方程式一直持有敵意。他們認為,投資管理需要天賦、直覺以及獨特的駕馭市場的能力,基金經理可以獨力打敗市場,而無需依靠那些缺乏靈魂、怪異的數學符號和縹緲虛幻的模型。在美國,70年代初期表現最佳的基金經理人從未聽過貝塔值,並認為那些擁有數學和電腦背景的學者只是一群騙子。
1973~1974年美國債券市場和股票市場全面崩盤,明星基金經理人煙消雲散,財富縮水堪比30年代大蕭條。當時,頗有先見的投資顧問兼作家彼得·伯恩斯坦認為,必須採用更好的方法管理投資組合,並創辦了《投資組合》雜志,一出刊便獲得成功。此後,隨著80年代以來各類證券和期權類產品的豐富和交易量的大增.量化投資光彩炫目,但也具有魔鬼般的力量。它時而風光無限,但也常常墜入深淵。
1987年10月大股災,黑色星期一,當天股市和期貨成交量高達令人吃驚的410億美元,價值瞬間縮水6000億美元。很多股份直接通過電腦而不是經由交易所交易。一些採用投資組合保險策略的公司,在電腦模式的驅使下,不問價格機械賣出股票。很多交易員清楚這些投資組合會有大單賣出,寧願走在前面爭相出逃,加劇了恐慌。針對整個投資組合而非單個證券,機械式的交易,電腦的自動操作,使得這種量化投資出現助跌之效,大量的空單在瞬間湧出,將市場徹底砸垮。
在此次亞洲金融危機中,著名的長期資本管理公司,這家來自學術象牙塔的怪才充斥、主要運用量化投資技術的對沖基金,曾經在市場上呼風喚雨、無往不利,但偏偏遭遇俄羅斯國債違約這一小概率事件,陷入破產之境,迫使美聯儲集華爾街諸多投資銀行之力,加以救助。此外,始於2007年的金融危機中,量化投資也未能倖免。
雖然麻煩不斷,但量化投資依然必要且有效。要知道,在本次金融危機發生前,量化基金的表現連續8年超過其他投資方式。當然,挫折也會帶來量化投資技術的更新和完善,比如在模型中設定新的變數,尤其是加入以往並未包含的宏觀經濟參數。時過境遷,2011年,量化基金再次表現優異。雖然量化投資能否就此再度復興仍屬未知,但由本文先前的討論,漫漫歷史長河,此一趨勢已不可逆轉,量化投資依然擁有光明的未來。
德意志銀行的董事總經理、全球量化投資主管羅崟先生在激烈的競爭中脫穎而出,奪得全球最權威的《機構投資者》期刊2011年美國和歐洲量化分析第一名的佳績。在華爾街40餘年排名史上,罕有華人獲此殊榮。《金融時報》慧眼識金,就此專門做了訪談,並囑我就量化投資寫篇評論。我欣然命筆,並藉此祝願量化投資在中國的資本市場上,能夠早日生根。
Ⅸ 面試量化投資崗位,會問什麼問題
第一點 肯定會問你有沒有這方面的崗位的經驗,你做沒做過什麼牛逼或者很優秀的策略,作為一個應聘者你肯定是需要這個崗位工作的所有流程的。
Ⅹ 量化投資在中國前景如何
在 國 內 ,量化 交易的 相 對前 景 是 非 常好的。 近 些 年經 濟 轉 型, 實體 哀 嚎一篇 , 還 有 很 多回 老人 等著 吃 飯, 你 憑 什 么超 過 別人。而 量 化在國內答尚且 還 是 年 輕的行業 ,有 你 發 展的 空 間 。 你 現 在需 要 勇 氣 和 正確的道 路。 早點 接觸米 筐 量化交 易平 台對 你 的職 業 發展助 力無 窮 。