導航:首頁 > 股市分析 > 斐波那契分析

斐波那契分析

發布時間:2022-12-07 17:44:28

❶ 達芬奇密碼計算公式是什麼

公式為:A0=0,A1=1,An=A(n-1)+A(n-2)(n>=2,n∈N*)

❷ 斐波那契分析的介紹

《斐波那契分析》是2010年機械工業出版社出版的圖書,作者是康斯坦斯·布朗(ConstanceBrown)。

❸ 斐波那契分析的作者簡介

作者:(美國)康斯坦斯·布朗(Constance Brown) 譯者:李孝君
康斯坦斯·布朗在紐約做了版20多年機權構交易人。之後成立了航空動力學投資公司。隨後,康斯坦斯·布朗繼續活躍在其家鄉南卡羅萊納州。並通過網路為全球大量的銀行及非銀行金融機構提供咨詢服務。她的許多學生已經開始自己管理資產或在重要機構工作。她認為研討會和演講對未來技術的發展有重要貢獻。
布朗的第二本書《專業交易人士技術分析》(Journal Analysis for the Trading Professional)被市場技術分析師協會選作特許市場技術分析師3級考試必讀本。3級是特許市場技術分析師獲取資格的最終考試。布朗已經出版了7本書。她是美國技術分析師協會《技術分析師雜志》(Journal of Technical Analysis)的編輯、美國職業技術分析師協會的會員。

❹ 數學"斐波拉契數列"問題

答案錯了,應該是233對。分析如下我們不妨拿新出生的一對小兔子分析一下: 第一個月小兔子沒有繁殖能力,所以還是一對; 兩個月後,生下一對小兔民數共有兩對; 三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對; ------ 依次類推可以列出下表: 經過月數:---1---2---3---4---5---6---7---8---9---10---11---12 ---13 (一年後) 兔子對數:---1---1---2---3---5---8--13--21--34--55--89--144 ---233 或者,利用利用斐波拉契數列的通項公式F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n},且令n=13即得:一年後圍牆中共有對兔子F(13)=233

❺ 數學歸納法證明斐波納挈數列

斐波那契數列,「斐波那契數列」的發明者,是義大利數學家列昂納多·斐波那契(LeonardoFibonacci,生於公元1170年,卒於1240年。籍貫大概是比薩)。他被人稱作「比薩的列昂納多」。1202年,他撰寫了《珠算原理》(Liber Abaci)一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯研究數學。
斐波那契數列指的是這樣一個數列:1,1,2,3,5,8,13,21……
這個數列從第三項開始,每一項都等於前兩項之和。它的通項公式為:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根號5】
很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。

【該數列有很多奇妙的屬性】
比如:隨著數列項數的增加,前一項與後一項之比越逼近黃金分割0.6180339887……
還有一項性質,從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1。
如果你看到有這樣一個題目:某人把一個8*8的方格切成四塊,拼成一個5*13的長方形,故作驚訝地問你:為什麼64=65?其實就是利用了斐波那契數列的這個性質:5、8、13正是數列中相鄰的三項,事實上前後兩塊的面積確實差1,只不過後面那個圖中有一條細長的狹縫,一般人不容易注意到。
如果任意挑兩個數為起始,比如5、-2.4,然後兩項兩項地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你將發現隨著數列的發展,前後兩項之比也越來越逼近黃金分割,且某一項的平方與前後兩項之積的差值也交替相差某個值。
斐波那契數列的第n項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。

【斐波那契數列別名】
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
斐波那契數列
一般而言,兔子在出生兩個月後,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔都不死,那麼一年以後可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對;
兩個月後,生下一對小兔民數共有兩對;
三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對;
------
依次類推可以列出下表:
經過月數:0123456789101112
兔子對數:1123581321345589144233
表中數字1,1,2,3,5,8---構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了後一項。
這個數列是義大利中世紀數學家斐波那契在<算盤全書>中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)/的性質外,還可以證明通項公式為:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)

【斐波那挈數列通項公式的推導】

斐波那契數列:1,1,2,3,5,8,13,21……
如果設F(n)為該數列的第n項(n∈N+)。那麼這句話可以寫成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
顯然這是一個線性遞推數列。

通項公式的推導方法一:利用特徵方程
線性遞推數列的特徵方程為:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
則F(n)=C1*X1^n+ C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根號5】
通項公式的推導方法二:普通方法
設常數r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
則r+s=1, -rs=1
n≥3時,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
將以上n-2個式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化簡得:
F(n)=s^(n-1)+r*F(n-1)
那麼:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+r^(n-2)*s + r^(n-1)
(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公差的等比數列的各項的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解為 s=(1+√5)/2, r=(1-√5)/2
則F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

【C語言程序】
main()
{
long fib[40] = {1,1};
int i;
for(i=2;i<40;i++)
{
fib[i ] = fib[i-1]+fib[i-2];
}
for(i=0;i<40;i++)
{
printf("F%d==%d\n", i, fib);
}
return 0;
}

【Pascal語言程序】
var
fib: array[0..40]of longint;
i: integer;
begin
fib[0] := 1;
fib[1] := 1;
for i:=2 to 39 do
fib[i ] := fib[i-1] + fib[i-2];
for i:=0 to 39 do
write('F', i, '=', fib[i ]);
end.
【數列與矩陣】
對於斐波那契數列1,1,2,3,5,8,13…….有如下定義
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
對於以下矩陣乘法
F(n+1) = 1 1 * F(n)
F(n) 1 0 F(n-1)
它的運算就是
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可見該矩陣的乘法完全符合斐波那契數列的定義
設1 為B,1 1為C
1 1 0
可以用迭代得到:
斐波那契數列的某一項F(n)=(BC^(n-2))1
這就是斐波那契數列的矩陣乘法定義.
另矩陣乘法的一個運演算法則A¬^n(n為偶數)=A^(n/2)* A^(n/2).
因此可以用遞歸的方法求得答案.
時間效率:O(logn),比模擬法O(n)遠遠高效。
代碼(PASCAL)
{變數matrix是二階方陣, matrix是矩陣的英文}
program fibonacci;
type
matrix=array[1..2,1..2] of qword;
var
c,cc:matrix;
n:integer;
function multiply(x,y:matrix):matrix;
var
temp:matrix;
begin
temp[1,1]:=x[1,1]*y[1,1]+x[1,2]*y[2,1];
temp[1,2]:=x[1,1]*y[1,2]+x[1,2]*y[2,2];
temp[2,1]:=x[2,1]*y[1,1]+x[2,2]*y[2,1];
temp[2,2]:=x[2,1]*y[1,2]+x[2,2]*y[2,2];
exit(temp);
end;
function getcc(n:integer):matrix;
var
temp:matrix;
t:integer;
begin
if n=1 then exit(c);
t:=n div 2;
temp:=getcc(t);
temp:=multiply(temp,temp);
if odd(n) then exit(multiply(temp,c))
else exit(temp);
end;
procere init;
begin
readln(n);
c[1,1]:=1;
c[1,2]:=1;
c[2,1]:=1;
c[2,2]:=0;
if n=1 then
begin
writeln(1);
halt;
end;
if n=2 then
begin
writeln(1);
halt;
end;
cc:=getcc(n-2);
end;
procere work;
begin
writeln(cc[1,1]+cc[1,2]);
end;
begin
init;
work;
end.
【數列值的另一種求法】
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距離 x 最近的整數。

【數列的前若干項】
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
10 89
11 144
12 233
13 377
14 610
15 987
16 1597
17 2584
18 4181
19 6765
20 10946

❻ 急!!!菲波納斯數列

首先說明:在一樓回答的是二B,不懂別他什麼什麼裝懂。
「菲波納斯數列」是很有名的。因為前n項和=第(n+2)項減去一。你隨便寫個數列看能很快求出前n項和嗎?比如前5項和為1,1,2,3,5=13-1=12;前10項和=144-1=143.菲波納斯是個數學家,以他的名字命名的數列是因為這個數列可以求出兔子的個數:1,1是表示兩個兔子,第二月成熟可生一小兔子,小兔子第二月也成熟也可以生小兔子……

對於提問者所說的:
「如果取n=7的13個數的排列情況來看,它的排列正好是鋼琴中13個半音階的排列次序」----我的回答是:可能是巧合,沒有規律的。這和355/113≈3.1415一樣的,是巧合。因為巧合了,人們才把一些東西扯到一起的。

以下是斐波拉契數列的簡介:

斐波拉契數列
■斐波拉契數列的簡介
斐波拉契數列(又譯作「斐波那契數列」)是一個非常美麗、和諧的數列,它的形狀可以用排成螺旋狀的一系列正方形來說明(如右詞條圖),起始的正方形(圖中用灰色表示)的邊長為1,在它左邊的那個正方形的邊長也是1 ,在這兩個正方形的上方再放一個正方形,其邊長為2,以後順次加上邊長為3、5、8、13、2l……等等的正方形。這些數字每一個都等於前面兩個數之和,它們正好構成了斐波那契數列。「斐波那契數列」的發明者,是義大利數學家列昂納多·斐波那契(Leonardo Fibonacci,生於公元1170年,卒於1240年。籍貫大概是比薩)。他被人稱作「比薩的列昂納多」。1202年,他撰寫了《珠算原理》(Liber Abaci)一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯研究數學。

斐波那契數列指的是這樣一個[font color=#800080]數列[/font]:1,1,2,3,5,8,13,21……
這個數列從第三項開始,每一項都等於前兩項之和。它的通項公式為:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} (√5表示5的平方根) (19世紀法國數學家敏聶(Jacques Phillipe Marie Binet 1786-1856)

很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。

■斐波拉契數列的出現
13世紀初,歐洲最好的數學家是斐波拉契;他寫了一本叫做《算盤書》的著作,是當時歐洲最好的數學書。書中有許多有趣的數學題,其中最有趣的是下面這個題目:
「如果一對兔子每月能生1對小兔子,而每對小兔在它出生後的第3個月裏,又能開始生1對小兔子,假定在不發生死亡的情況下,由1對初生的兔子開始,1年後能繁殖成多少對兔子?」
斐波拉契把推算得到的頭幾個數擺成一串:1,1,2,3,5,8……
這串數里隱含著一個規律:從第3個數起,後面的每個數都是它前面那兩個數的和。而根據這個規律,只要作一些簡單的加法,就能推算出以後各個月兔子的數目了。
於是,按照這個規律推算出來的數,構成了數學史上一個有名的數列。大家都叫它「斐波拉契數列」。這個數列有許多奇特的的性質,例如,從第3個數起,每個數與它後面那個數的比值,都很接近於0.618,正好與大名鼎鼎的「黃金分割律」相吻合。人們還發現,連一些生物的生長規律,在某種假定下也可由這個數列來刻畫呢。<B>
■斐波拉契數列的來源及關系</B>
斐波拉契(Fibonacci)數列來源於兔子問題,它有一個遞推關系,
f(1)=1
f(2)=1
f(n)=f(n-1)+f(n-2),其中n>=2
{f(n)}即為斐波拉契數列。
<B>■斐波拉契數列的公式
</B>它的通項公式為:{[(1+√5)/2]^n - [(1-√5)/2]^n }/√5 (註:√5表示根號5)
■斐波拉契數列的某些性質
■1),f(n)f(n)-f(n+1)f(n-1)=(-1)^n;
■2), f(1)+f(2)+f(3)+……+f(n)=f(n+2)-1
■3),arctan[1/f(2n+1)]=arctan[1/f(2n+2)]+arctan[1/f(2n+3)]

[font class=arr][/font][font class=t1][font size=3]【斐波拉契數列的存在】[/font][/font]
甚至可以說,斐波拉契數列無處不在,以下僅舉幾條常見的例子
■1.楊輝三角對角線上各數之和構成斐波拉契數列 .
■2.多米諾牌(可以看作一個2×1大小的方格)完全覆蓋一個n×2的棋盤,覆蓋的方案數等於斐波拉契數列。
■3. 從蜜蜂的繁殖來看,雄峰只有母親,沒有父親,因為蜂後產的卵,受精的孵化為雌蜂,未受精的孵化為雄峰。人們在追溯雄峰的祖先時,發現一隻雄峰的第n代祖先的數目剛好就是斐波拉契數列的第n項Fn。
■4.鋼琴的13個半音階的排列完全與雄峰第六代的排列情況類似,說明音調也與斐波拉契數列有關。
■5.自然界中一些花朵的花瓣數目符合於斐波拉契數列,也就是說在大多數情況下,一朵花花瓣的數目都是3,5,8,13,21,34,……(有6枚是兩套3枚;有4枚可能是基因突變)。
■6.如果一根樹枝每年長出一根新枝,而長出的新枝兩年以後,每年也長出一根新枝,那麼歷年的樹枝數,也構成一個斐波拉契數列 .

[font class=arr][/font][font class=t1][font size=3]【斐波拉契數列與黃金分割】[/font][/font]
斐波拉契數列與黃金分割有什麼關系呢?經研究發現,相鄰兩個斐波拉契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n-1)/f(n)-→0.618…。由於斐波拉契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的斐波拉契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。

不僅這個由1,1,2,3,5....開始的"斐波拉契數"是這樣,隨便選兩個整數,然後按照斐波拉契數的規律排下去,兩數間比也是會逐漸逼近黃金比的.
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
斐波那契數列

一般而言,兔子在出生兩個月後,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔都不死,那麼一年以後可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對;
兩個月後,生下一對小兔民數共有兩對;
三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對;
------
依次類推可以列出下表:
經過月數:0 1 2 3 4 5 6 7 8 9 10 11 12
兔子對數:1 1 2 3 5 8 13 21 34 55 89 144 233
表中數字1,1,2,3,5,8---構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了後一項。
這個數列是義大利中世紀數學家斐波那契在<算盤全書>中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)/的性質外,還可以證明通項公式為:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)

斐波那契數列:1,1,2,3,5,8,13,21……

如果設F(n)為該數列的第n項(n∈N+)。那麼這句話可以寫成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

顯然這是一個線性遞推數列。

通項公式的推導方法一:利用特徵方程

線性遞推數列的特徵方程為:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.

則F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} (√5表示5的平方根)

通項公式的推導方法二:普通方法

設常數r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
則r+s=1, -rs=1

n≥3時,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]

將以上n-2個式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化簡得:
F(n)=s^(n-1)+r*F(n-1)

那麼:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公差的[font color=#800080]等比數列[/font]的各項的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解為 s=(1+√5)/2, r=(1-√5)/2
則F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

❼ 什麼是斐波那契數列

斐波那契數列數列從第3項開始,每一項都等於前兩項之和。

例子:數列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........

應用:

生活斐波那契

斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。

斐波那契數與植物花瓣3………………………

百合和蝴蝶花5……………………

藍花耬斗菜、金鳳花、飛燕草、毛茛花8………………………

翠雀花13………………………

金盞和玫瑰21……………………

紫宛34、55、89……………雛菊

斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。

葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。

黃金分割

隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887..…

(7)斐波那契分析擴展閱讀:

性質:

平方與前後項

從第二項開始,每個奇數項的平方都比前後兩項之積少1,每個偶數項的平方都比前後兩項之積多1。

如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。

(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)

證明經計算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)

發明者:

斐波那契數列的發明者,是義大利數學家列昂納多·斐波那契(Leonardo Fibonacci),生於公元1170年,卒於1250年,籍貫是比薩。他被人稱作「比薩的列昂納多」。1202年,他撰寫了《算盤全書》(Liber Abacci)一書。

他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯等地研究數學。

股票分析:斐波那契數列線是怎麼做出來的

高手談不上!算手癢相互交流吧!我談點斐波那契數列的個人觀點吧:1、版1、2、3、5、8、13、21.....這樣的前數家後權數等於下一個數的數字組合在很多領域都有運用。當然股市也有很多的人士運用。他的神奇在於前一項與後一項之比越來越逼近黃金分割。這在股市上也是很多人熱衷的技術運用。甚至在國外還有專門研究的機構。我個人的看法是,它和波浪理論一樣。在起算點的把握上存在很大的不確定。這樣很難把握住股市的時間倉。加上國內股市的政策因數過多讓這個神奇的數字在研判上打了很大的折扣。國內很多運用量價關系來研判短期的。在中長期上很多會結合黃金分割。但真的用斐波那契數列的的確不多。我知道有朋友把ma改成斐波那契數列的數值的。不過我沒有研究過!作為研究可以試試!不過個人建議不要把實驗階段的指標用於實際操作!呵呵!用空大家交流!

閱讀全文

與斐波那契分析相關的資料

熱點內容
富國中證指數分級基金凈值 瀏覽:196
通過c輪融資 瀏覽:700
哪些基金收益高穩健 瀏覽:286
融資平台融資模式 瀏覽:321
中國黃金集團投資公司 瀏覽:937
如何把握股票時間和價格關系 瀏覽:459
燃油價格和PTA有關聯嗎 瀏覽:958
銀融國際融資公司 瀏覽:966
2019年5月22日紙黃金價格 瀏覽:478
後門融資假說 瀏覽:367
中國銀行理財很低 瀏覽:872
私募基金持股合夥企業 瀏覽:683
金易國際期貨平台 瀏覽:397
做醫葯理財 瀏覽:155
波濤系統交易方法pdf 瀏覽:294
股權融資協議範本 瀏覽:409
股票荷蘭上市什麼意思 瀏覽:532
信託中的資金池業務 瀏覽:551
賭股票的人 瀏覽:760
硅鐵出口國外價格 瀏覽:340