A. 因子分析法的介紹
因子分析的基本目的就是用少數幾個因子去描述許多指標或因素之間的聯系,即將相關比較密切的幾個變數歸在同一類中,每一類變數就成為一個因子,以較少的幾個因子反映原資料的大部分信息。運用這種研究技術,我們可以方便地找出影響消費者購買、消費以及滿意度的主要因素是哪些,以及它們的影響力。運用這種研究技術,我們還可以為市場細分做前期分析。
B. 因子分析法的模型
因子分析法是從研究變數內部相關的依賴關系出發,把一些具有錯綜復雜關系的變數歸結為少數幾個綜合因子的一種多變數統計分析方法。它的基本思想是將觀測變數進行分類,將相關性較高,即聯系比較緊密的分在同一類中,而不同類變數之間的相關性則較低,那麼每一類變數實際上就代表了一個基本結構,即公共因子。對於所研究的問題就是試圖用最少個數的不可測的所謂公共因子的線性函數與特殊因子之和來描述原來觀測的每一分量。
因子分析模型描述如下:
⑴X = (x1,x2,…,xp)¢是可觀測隨機向量,均值向量E(X)=0,協方差陣Cov(X)=∑,且協方差陣∑與相關矩陣R相等(只要將變數標准化即可實現)。
⑵F = (F1,F2,…,Fm)¢ (m<p)是不可測的向量,其均值向量E(F)=0,協方差矩陣Cov(F) =I,即向量的各分量是相互獨立的。
⑶e = (e1,e2,…,ep)¢與F相互獨立,且E(e)=0, e的協方差陣∑是對角陣,即各分量e之間是相互獨立的,則模型:
x1 = a11F1+ a12F2 +…+a1mFm + e1
x2 = a21F1+a22F2 +…+a2mFm + e2
………
xp = ap1F1+ ap2F2 +…+apmFm + ep
稱為因子分析模型,由於該模型是針對變數進行的,各因子又是正交的,所以也稱為R型正交因子模型。
其矩陣形式為:x =AF + e .
其中:
x=,A=,F=,e=
這里,
⑴m £ p;
⑵Cov(F,e)=0,即F和e是不相關的;
⑶D(F) = Im ,即F1,F2,…,Fm不相關且方差均為1;
D(e)=,即e1,e2,…,ep不相關,且方差不同。
我們把F稱為X的公共因子或潛因子,矩陣A稱為因子載荷矩陣,e 稱為X的特殊因子。
A = (aij),aij為因子載荷。數學上可以證明,因子載荷aij就是第i變數與第j因子的相關系數,反映了第i變數在第j因子上的重要性。
C. spss用一組數據進行因子分析降維後進行logistic回歸分析,之後怎麼運用這個模型來預測新的數據
二元logit回歸
1.打開數據,依次點擊:analyse--regression--binarylogistic,打開二分回歸對話框。
2.將因變數和自變數放入格子的列表裡,上面的是因變數,下面的是自變數(單變數拉入一個,多因素拉入多個)。
3.設置回歸方法,這里選擇最簡單的方法:enter,它指的是將所有的變數一次納入到方程。其他方法都是逐步進入的方法。
4.等級資料,連續資料不需要設置虛擬變數。多分類變數需要設置虛擬變數。
虛擬變數ABCD四類,以a為參考,那麼解釋就是b相對於a有無影響,c相對於a有無影響,d相對於a有無影響。
5.選項裡面
因子分析
1輸入數據。
2點Analyze 下拉菜單,選Data Rection 下的Factor 。
3打開Factor Analysis後,將數據變數逐個選中進入Variables 對話框中。
4單擊主對話框中的Descriptive按扭,打開Factor Analysis: Descriptives子對話框,在Statistics欄中選擇Univariate Descriptives項要求輸出個變數的均值與標准差,在Correlation Matrix 欄內選擇Coefficients項,要求計算相關系數矩陣,單擊Continue按鈕返回Factor Analysis主對話框。
5單擊主對話框中的Extraction 按鈕,打開如下圖所示的Factor Analysis: Extraction 子對話框。在Method列表中選擇默認因子抽取方法——Principal Components,在Analyze 欄中選擇默認的Correlation Matrix 項要求從相關系數矩陣出發求解主成分,在Exact 欄中選擇Number of Factors;6, 要求顯示所有主成分的得分和所能解釋的方差。單擊Continue按鈕返回Factor Analysis主對話框。
6單擊主對話框中的OK 按鈕,輸出結果。
D. 進行因子分析後的Logistic模型構建及測試問題
當然是將樣本數據經過因子分析帶入啦,不然你直接帶入模型的被解釋變數是什麼???
E. 因子分析的基本步驟
因子分析是指研究從變數群中提取共性因子的統計技術。最早由英國心理學家C.E.斯皮爾曼提出。他發現學生的各科成績之間存在著一定的相關性,一科成績好的學生,往往其他各科成績也比較好,從而推想是否存在某些潛在的共性因子,或稱某些一般智力條件影響著學生的學習成績。因子分析可在許多變數中找出隱藏的具有代表性的因子。將相同本質的變數歸入一個因子,可減少變數的數目,還可檢驗變數間關系的假設。因子分析的前提條件
由於因子分析的主要任務之一是對原有變數進行濃縮,即將原有變數中的信息重疊部分提取和綜合成因子,進而最終實現減少變數個數的目的。因此它要求原有變數之間應存在較強的相關關系。否則,如果原有變數相互獨立,相關程度很低,不存在信息重疊,它們不可能有共同因子,那麼也就無法將其綜合和濃縮,也就無需進行因子分析。本步驟正是希望通過各種方法分析原有變數是否存在相關關系,是否適合進行因子分析。SPSS提供了四個統計量可幫助判斷觀測數據是否適合作因子分析:
(1)計算相關系數矩陣Correlation Matrix
在進行提取因子等分析步驟之前,應對相關矩陣進行檢驗,如果相關矩陣中的大部分相關系數小於0.3,則不適合作因子分析;當原始變數個數較多時,所輸出的相關系數矩陣特別大,觀察起來不是很方便,所以一般不會採用此方法或即使採用了此方法,也不方便在結果匯報中給出原始分析報表。
(2)計算反映象相關矩陣Anti-image correlation matrix
反映象矩陣重要包括負的協方差和負的偏相關系數。偏相關系數是在控制了其他變數對兩變數影響的條件下計算出來的凈相關系數。如果原有變數之間確實存在較強的相互重疊以及傳遞影響,也就是說,如果原有變數中確實能夠提取出公共因子,那麼在控制了這些影響後的偏相關系數必然很小。觀察反映象相關矩陣,如果反映象相關矩陣中除主對角元素外,其他大多數元素的絕對值均小,對角線上元素的值越接近1,則說明這些變數的相關性較強,適合進行因子分析。與方法(1)中最後所述理由相同,一般少採用此方法
(3)巴特利特球度檢驗Bartlett test of sphericity
Bartlett球體檢驗的目的是檢驗相關矩陣是否是單位矩陣(identity matrix),如果是單位矩陣,則認為因子模型不合適。Bartlett球體檢驗的虛無假設為相關矩陣是單位陣,如果不能拒絕該假設的話,就表明數據不適合用於因子分析。一般說來,顯著水平值越小(<0.05)表明原始變數之間越可能存在有意義的關系,如果顯著性水平很大(如0.10以上)可能表明數據不適宜於因子分析。
(4)KMO(Kaiser-Meyer-OklinMeasure of Smapling Adequacy)
KMO是Kaiser-Meyer-Olkin的取樣適當性量數。KMO測度的值越高(接近1.0時),表明變數間的共同因子越多,研究數據適合用因子分析。通常按以下標准解釋該指標值的大小:KMO值達到0.9以上為非常好,0.8~0.9為好,0.7~0.8為一般,0.6~0.7為差,0.5~0.6為很差。如果KMO測度的值低於0.5時,表明樣本偏小,需要擴大樣本。
F. 因子分析法的統計意義
模型中F1,F2,…,Fm叫做主因子或公共因子,它們是在各個原觀測變數的表達式中都共同出現的因子,是相互獨立的不可觀測的理論變數。公共因子的含義,必須結合具體問題的實際意義而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之間以及特殊因子與所有公共因子之間都是相互獨立的。模型中載荷矩陣A中的元素(aij)是為因子載荷。因子載荷aij是xi與Fj的協方差,也是xi與Fj的相關系數,它表示xi依賴Fj的程度。可將aij看作第i個變數在第j公共因子上的權,aij的絕對值越大(|aij|£1),表明xi與Fj的相依程度越大,或稱公共因子Fj對於xi的載荷量越大。為了得到因子分析結果的經濟解釋,因子載荷矩陣A中有兩個統計量十分重要,即變數共同度和公共因子的方差貢獻。
因子載荷矩陣A中第i行元素之平方和記為hi2,稱為變數xi的共同度。它是全部公共因子對xi的方差所做出的貢獻,反映了全部公共因子對變數xi的影響。hi2大表明x的第i個分量xi對於F的每一分量F1,F2,…,Fm的共同依賴程度大。
將因子載荷矩陣A的第j列( j =1,2,…,m)的各元素的平方和記為gj2,稱為公共因子Fj對x的方差貢獻。gj2就表示第j個公共因子Fj對於x的每一分量xi(i= 1,2,…,p)所提供方差的總和,它是衡量公共因子相對重要性的指標。gj2越大,表明公共因子Fj對x的貢獻越大,或者說對x的影響和作用就越大。如果將因子載荷矩陣A的所有gj2 ( j =1,2,…,m)都計算出來,使其按照大小排序,就可以依此提煉出最有影響力的公共因子。
3. 因子旋轉
建立因子分析模型的目的不僅是找出主因子,更重要的是知道每個主因子的意義,以便對實際問題進行分析。如果求出主因子解後,各個主因子的典型代表變數不很突出,還需要進行因子旋轉,通過適當的旋轉得到比較滿意的主因子。
旋轉的方法有很多,正交旋轉(orthogonal rotation)和斜交旋轉(oblique rotation)是因子旋轉的兩類方法。最常用的方法是最大方差正交旋轉法(Varimax)。進行因子旋轉,就是要使因子載荷矩陣中因子載荷的平方值向0和1兩個方向分化,使大的載荷更大,小的載荷更小。因子旋轉過程中,如果因子對應軸相互正交,則稱為正交旋轉;如果因子對應軸相互間不是正交的,則稱為斜交旋轉。常用的斜交旋轉方法有Promax法等。
4.因子得分
因子分析模型建立後,還有一個重要的作用是應用因子分析模型去評價每個樣品在整個模型中的地位,即進行綜合評價。例如地區經濟發展的因子分析模型建立後,我們希望知道每個地區經濟發展的情況,把區域經濟劃分歸類,哪些地區發展較快,哪些中等發達,哪些較慢等。這時需要將公共因子用變數的線性組合來表示,也即由地區經濟的各項指標值來估計它的因子得分。
設公共因子F由變數x表示的線性組合為:
Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m
該式稱為因子得分函數,由它來計算每個樣品的公共因子得分。若取m=2,則將每個樣品的p個變數代入上式即可算出每個樣品的因子得分F1和F2,並將其在平面上做因子得分散點圖,進而對樣品進行分類或對原始數據進行更深入的研究。
但因子得分函數中方程的個數m小於變數的個數p,所以並不能精確計算出因子得分,只能對因子得分進行估計。估計因子得分的方法較多,常用的有回歸估計法,Bartlett估計法,Thomson估計法。
⑴回歸估計法
F = X b = X (X ¢X)-1A¢ = XR-1A¢ (這里R為相關陣,且R = X ¢X )。
⑵Bartlett估計法
Bartlett估計因子得分可由最小二乘法或極大似然法導出。
F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X
⑶Thomson估計法
在回歸估計法中,實際上是忽略特殊因子的作用,取R = X ¢X,若考慮特殊因子的作用,此時R = X ¢X+W,於是有:
F = XR-1A¢ = X (X ¢X+W)-1A¢
這就是Thomson估計的因子得分,使用矩陣求逆演算法(參考線性代數文獻)可以將其轉換為:
F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢
G. 因子分析spss步驟
自分析spss的的具體操作步驟,你可以直接按提示
H. spss因子分析怎麼確定 模型
你的意思是說求綜合因子得分值嗎?如果是這個意思的話,就是用你經過旋轉內後或其他容方法得出的各個因子的方差貢獻率分別乘以各因子矩陣就可以了。
你確定你的方法是因子分析,因為因子分析裡面沒有各主成分這個概念,只有主要因子這個說法。
I. 有什麼書是介紹因子分析法的,建立因子分析模型的
因子分析是用來評價產業競爭力水平的,多下載幾篇寫產業競爭力的論文,裡面大多是用因子分析模型來做的,參考他們的用就行了!關鍵是你的收集全了數據,這個很重要!
J. 因子分析方法
因子分析是一種多變數化簡技術,目的是分解原始變數,從中歸納出潛在的「類別」,相關性較強的指標歸為一類,不同類間變數的相關性較低,每一類變數代表了一個「共同因子」,即一種內在結構,因子分析就是要尋找該結構。其分析方法有很多種,最常用的有兩種:一是主成分分析方法;另外一種是一般因子分析法。通常所說的因子分析指的就是一般因子分析法,它通過原始變數的方差去構造因子,一般情況下,因子的數量總是要少於變數的數量。所以對於一般因子分析而言,如何正確解釋因子將會比主成分分析更困難。
因子分析一般可以分成四步:
考察變數之間的相關性,判斷是否要進行因子分析;
進行分析,按一定的標准確定提取的因子數目,一般要求特徵值大於1;
考察因子的可解釋性,並在必要時進行因子旋轉,以尋求最佳解釋方式;
計算出因子得分等中間指標,供進一步分析使用。
利用因子分析,可以把搜集到的比較雜亂的原始數據進行壓縮,找出最重要的因子,並對其按照成因歸類、整理,從中找出幾條主線,幫助分析充滿度的主要控制因素。
本研究中共統計岩性圈閉354個,參與統計分析和計算的圈閉有249個。由於其中的落空圈閉無法參與因子分析及充滿度預測模型的建立,因此實際參與分析和預測的岩性油氣藏為222個。初步地質分析後,選取平均孔隙度,%;平均滲透率,10-3μm2;排烴強度,104t/km2;與排烴中心的平面距離,km;與排烴中心的垂直距離,m;地層壓力系數;砂體厚度,m;砂體面積,km2;有機質豐度,%;圍岩厚度,m;平均埋深,m;共11個地質參數進行因子分析。
本研究按不同的成藏體系進行,建立其充滿度預測模型並進行回代驗證。同一成藏體系內的岩性油氣藏的生、儲、蓋、圈、運、保等成藏條件相互影響、相互制約,關系密切,將同一成藏體系中的岩性油氣藏又分別劃分為構造-岩性、透鏡體油氣藏進行預測。