導航:首頁 > 股市分析 > 銀行金融風控大數據分析

銀行金融風控大數據分析

發布時間:2021-04-17 12:54:57

『壹』 常用的互聯網金融大數據風控方式有哪些

1:驗證借款人信息
驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以通過藉助銀聯數據來驗證銀行卡號和姓名。
其他的驗證客戶的方式包括讓客戶出示其他銀行的信用卡及刷卡記錄,或者驗證客戶的學歷證書和身份認證。

2:大數據分析提交的信息
大部分的貸款申請都從線下移到了線上,特別是在互聯網金融領域,消費貸一般都是以線上申請為主的。
線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相同、單位名稱相同、甚至居住的樓層和號碼都相同。
3:分析客戶的消費信息
從客戶的電商消費記錄、旅遊消費記錄、以及加油消費記錄都可以作為評估其信用的依據。有的互聯金融公司專門從事個人電商消費數據分析,只要客戶授權其登陸電商網站,其可以藉助於工具將客戶歷史消費數據全部抓取並進行匯總和評分。
4:參考客戶的社會屬性和行為進行評估
參考過去互聯網金融風控的經驗發現,擁有伴侶和子女的借款人,其貸款違約率較低;年齡大的人比年齡低的人貸款違約率要高。經常不交公共事業費和物業費的人,其貸款違約率較高。經常換工作,收入不穩定的人貸款違約率較高。經常參加社會公益活動的人,成為各種組織會員的人,其貸款違約率低。經常更換手機號碼的人貸款違約率比一直使用一個電話號碼的人高很多。

5:調查客戶是否進入黑名單
市場上有近百家的公司從事個人徵信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶徵信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。
涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。

『貳』 大數據風控系統在金融領域有沒有什麼案例

我們公司就是有做大數據風控系統開發,在金融行業也有案例,可以到網站上去看看。
大數據風控流程的建立主要分為四個階段:數據收集、數據建模、構建客戶評分體系及監測分析。
收集到海量數據後,需經過大量的清洗、探索與抽樣,運用靈活策略來交叉匹配並綜合分析,構建出客戶評分體系。
基於先進的風控分析模型,以及准確、穩定、實時更新的豐富數據源,利用精密演算法和靈活策略進行綜合高效的監測分析,保障業務平台健康穩定運行。

『叄』 常見的金融大數據風控有哪些

主要場景有:P2P 、 小貸 、 現金貸 、 分期 、 第三方支付 、 汽車消費金融風控等等
目前國內大數據風控領域做的比較好的企業有通付盾等企業。

『肆』 如何利用大數據做金融風控

大數據能夠進行數據變現的商業模式目前就是兩個,一個是精準營銷,典型的場景是商品推薦和精準廣告投放,另外一個是大數據風控,典型的場景是互聯網金融的大數據風控。

金融的本質是風險管理,風控是所有金融業務的核心。典型的金融借貸業務例如抵押貸款、消費貸款、P2P、供應鏈金融、以及票據融資都需要數據風控識別欺詐用戶及評估用戶信用等級。

傳統金融的風控主要利用了信用屬性強大的金融數據,一般採用20個緯度左右的數據,利用評分來識別客戶的還款能力和還款意願。信用相關程度強的數據 緯度為十個左右,包含年齡、職業、收入、學歷、工作單位、借貸情況、房產,汽車、單位、還貸記錄等,金融企業參考用戶提交的數據進行打分,最後得到申請人 的信用評分,依據評分來決定是否貸款以及貸款額度。其他同信用相關的數據還有區域、產品、理財方式、行業、繳款方式、繳款記錄、金額、時間、頻率等。普惠在線

互聯網金融的大數據風控並不是完全改變傳統風控,實際是豐富傳統風控的數據緯度。互聯網風控中,首先還是利用信用屬性強的金融數據,判斷借款人的還 款能力和還款意願,然後在利用信用屬性較弱的行為數據進行補充,一般是利用數據的關聯分析來判斷借款人的信用情況,藉助數據模型來揭示某些行為特徵和信用 風險之間的關系。

互聯網金融公司利用大數據進行風控時,都是利用多維度數據來識別借款人風險。同信用相關的數據越多地被用於借款人風險評估,借款人的信用風險就被揭示的更充分,信用評分就會更加客觀,接近借款人實際風險。

常用的互聯網金融大數據風控方式有以下幾種:

驗證借款人身份
驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以藉助國政通的數據來驗證姓名、身份證號,藉助銀聯數據來驗證銀行卡號和姓名,利用運營商數據來驗證手機號、姓名、身份證號、家庭住址。

如果借款人是欺詐用戶,這五個信息都可以買到。這個時候就需要進行人臉識別了,人臉識別等原理是調用國政通/公安局 API介面,將申請人實時拍攝的照片/視頻同客戶預留在公安的身份證進行識別,通過人臉識別技術驗證申請人是否是借款人本人。

其他的驗證客戶的方式包括讓客戶出示其他銀行的信用卡及刷卡記錄,或者驗證客戶的學歷證書和身份認證。
分析提交的信息來識別欺詐

大部分的貸款申請都從線下移到了線上,特別是在互聯網金融領域,消費貸和學生貸都是以線上申請為主的。
線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往 往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相 同、單位名稱相同、甚至居住的樓層和號碼都相同。還有一些填寫假的小區、地址和單位名稱以及電話等。

如果企業發現一些重復的信息和電話號碼,申請人欺詐的可能性就會很高。

分析客戶線上申請行為來識別欺詐

欺詐用戶往往事先准備好用戶基本信息,在申請過程中,快速進行填寫,批量作業,在多家網站進行申請,通過提高申請量來獲得更多的貸款。

企業可以藉助於SDK或JS來採集申請人在各個環節的行為,計算客戶閱讀條款的時間,填寫信息的時間,申請貸款的時間等,如果這些申請時間大大小於 正常客戶申請時間,例如填寫地址信息小於2秒,閱讀條款少於3秒鍾,申請貸款低於20秒等。用戶申請的時間也很關鍵,一般晚上11點以後申請貸款的申請 人,欺詐比例和違約比例較高。

這些異常申請行為可能揭示申請人具有欺詐傾向,企業可以結合其他的信息來判斷客戶是否為欺詐用戶。
利用黑名單和灰名單識別風險

互聯網金融公司面臨的主要風險為惡意欺詐,70%左右的信貸損失來源於申請人的惡意欺詐。客戶逾期或者違約貸款中至少有30%左右可以收回,另外的一些可以通過催收公司進行催收,M2逾期的回收率在20%左右。

市場上有近百家的公司從事個人徵信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶徵信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。

黑名單來源於民間借貸、線上P2P、信用卡公司、小額借貸等公司的歷史違約用戶,其中很大一部分不再有借貸行為,參考價值有限。另外一個主要來源是催收公司,催收的成功率一般小於於30%(M3以上的),會產生很多黑名單。

灰名單是逾期但是還沒有達到違約的客戶(逾期少於3個月的客戶),灰名單也還意味著多頭借貸,申請人在多個貸款平台進行借貸。總借款數目遠遠超過其還款能力。

黑名單和灰名單是很好的風控方式,但是各個徵信公司所擁有的名單僅僅是市場總量的一部分,很多互聯網金融公司不得不接入多個風控公司,來獲得更多的 黑名單來提高查得率。央行和上海經信委正在聯合多家互聯網金融公司建立統一的黑名單平台,但是很多互聯網金融公司都不太願意貢獻自家的黑名單,這些黑名單 是用真金白銀換來的教訓。另外如果讓外界知道了自家平台黑名單的數量,會影響其公司聲譽,降低公司估值,並令投資者質疑其平台的風控水平。

利用移動設備數據識別欺詐
行為數據中一個比較特殊的就是移動設備數據反欺詐,公司可以利用移動設備的位置信息來驗證客戶提交的工作地和生活地是否真實,另外來可以根據設備安裝的應用活躍來識別多頭借貸風險。

欺詐用戶一般會使用模擬器進行貸款申請,移動大數據可以識別出貸款人是否使用模擬器。欺詐用戶也有一些典型特徵,例如很多設備聚集在一個區域,一起 申請貸款。欺詐設備不安裝生活和工具用App,僅僅安裝和貸款有關的App,可能還安裝了一些密碼破譯軟體或者其他的惡意軟體。

欺詐用戶還有可能不停更換SIM卡和手機,利用SIM卡和手機綁定時間和頻次可以識別出部分欺詐用戶。另外欺詐用戶也會購買一些已經淘汰的手機,其機器上面的操作系統已經過時很久,所安裝的App版本都很舊。這些特徵可以識別出一些欺詐用戶。

利用消費記錄來進行評分

大會數據風控除了可以識別出壞人,還可以評估貸款人的還款能力。過去傳統金融依據借款人的收入來判斷其還款能力,但是有些客戶擁有工資以外的收入,例如投資收入、顧問咨詢收入等。另外一些客戶可能從父母、伴侶、朋友那裡獲得其他的財政支持,擁有較高的支付能力。

按照傳統金融的做法,在家不工作照顧家庭的主婦可能還款能力較弱。無法給其提供貸款,但是其丈夫收入很高,家庭日常支出由其太太做主。這種情況,就需要消費數據來證明其還款能力了。

常用的消費記錄由銀行卡消費、電商購物、公共事業費記錄、大宗商品消費等。還可以參考航空記錄、手機話費、特殊會員消費等方式。例如頭等艙乘坐次數,物業費高低、高爾夫球俱樂部消費,遊艇俱樂部會員費用,奢侈品會員,豪車4S店消費記錄等消費數據可以作為其信用評分重要參考。

互聯網金融的主要客戶是屌絲,其電商消費記錄、旅遊消費記錄、以及加油消費記錄都可以作為評估其信用的依據。有的互聯金融公司專門從事個人電商消費數據分析,只要客戶授權其登陸電商網站,其可以藉助於工具將客戶歷史消費數據全部抓取並進行匯總和評分。

參考社會關系來評估信用情況

物以類聚,人與群分。一般情況下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,

參考借款人常聯系的朋友信用評分可以評價借款人的信用情況,一般會採用經常打電話的朋友作為樣本,評估經常聯系的幾個人(不超過6六個人)的信用評分,去掉一個最高分,去掉一個最低分,取其中的平均值來判斷借款人的信用。這種方式挑戰很大,只是依靠手機號碼來判斷個人信用可信度不高。一般僅僅用於反欺詐識別,利用其經常通話的手機號在黑名單庫裡面進行匹配,如果命中,則此申請人的風險較高,需要進一步進行調查。

參考借款人社會屬性和行為來評估信用

參考過去互聯網金融風控的經驗發現,擁有伴侶和子女的借款人,其貸款違約率較低;年齡大的人比年齡低的人貸款違約率要高,其中50歲左右的貸款人違 約率最高,30歲左右的人違約率最低。貸款用於家庭消費和教育的貸款人,其貸款違約率低;聲明月收入超過3萬的人比聲明月收入低於1萬5千的人貸款違約率 高;貸款次數多的人,其貸款違約率低於第一次貸款的人。

經常不交公共事業費和物業費的人,其貸款違約率較高。經常換工作,收入不穩定的人貸款違約率較高。經常參加社會公益活動的人,成為各種組織會員的人,其貸款違約率低。經常更換手機號碼的人貸款違約率比一直使用一個電話號碼的人高很多。

午夜經常上網,很晚發微博,生活不規律,經常在各個城市跑的申請人,其帶貸款違約率比其他人高30%。刻意隱瞞自己過去經歷和聯系方式,填寫簡單信 息的人,比信息填寫豐富的人違約概率高20%。借款時間長的人比借款時間短短人,逾期和違約概率高20%左右。擁有汽車的貸款人比沒有汽車的貸款人,貸款 違約率低10%左右。

利用司法信息評估風險

涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。

尋找這些涉毒涉賭的嫌疑人,可以利用當地的公安數據,但是難度較大。也可以採用移動設備的位置信息來進行一定程度的識別。如果設備經常在半夜出現在 賭博場所或賭博區域例如澳門,其申請人涉賭的風險就較高。另外中國有些特定的地區,當地的有一部分人群從事涉賭或涉賭行業,一旦申請人填寫的居住地址或者 移動設備位置信息涉及這些區域,也要引起重視。涉賭和涉毒的人員工作一般也不太穩定或者沒有固定工作收入,如果申請人經常換工作或者經常在某一個階段沒有 收入,這種情況需要引起重視。涉賭和涉毒的人活動規律比較特殊,經常半夜在外面活動,另外也經常住本地賓館,這些信息都可以參考移動大數據進行識別。

總之,互聯網金融的大數據風控採用了用戶社會行為和社會屬性數據,在一定程度上補充了傳統風控數據維度不足的缺點,能夠更加全面識別出欺詐客戶,評價客戶的風險水平。互聯網金融企業通過分析申請人的社會行為數據來控制信用風險,將資金借給合格貸款人,保證資金的安全。

『伍』 大數據如何助力銀行業金融機構輿情防控

金融企業運用大數據和機器學習演算法,對欠款客戶進行人群聚類並根據聚類的結果識別騙貸、惡意欠款、惡意透支、盜刷盜用、對交易有疑問拒絕還款、經濟狀況惡化無力還貸、遺忘還貸等多種欠款類型;從而准確預測客戶的還款概率和金額,從而進行催收策略評估,最大限度降低催收成本。
中國建設銀行資產總行風險管理部/資產保全部副總經理譚興民曾詳盡分析大數據何以幫助銀行提高徵信水平和風險管控能力:
首先,一站式徵信平台可以進行貸前客戶甄別。目前,銀行查詢客戶的情況既費時、費力,又增加銀行費用,而利用企業的一站式徵信平台,則可以最大限度地節省銀行的人力、物力及時間,並確保數據有效、及時、准確。
其次,風險量化平台可以助力貸後風險管控。平台基於企業日常經營數據,結合平台數據模型,採用動態、實時的雲端數據抓取技術,對企業的發展進行分析和評測,給出風險量化分數,並第一時間發現企業的生產經營異動,在風險觸發前3到6個月預警,使銀行等金融機構能夠及時採取相應措施,防止和減少損失發生。
同時,利用「企業族譜」查詢,對不良貸款進行監控。如一些企業通過關聯交易轉移利潤、製造虧損的假象,為不償還銀行貸款尋找理由;或者通過關聯交易製造虛假業績,為繼續獲得銀行貸款提供依據,這些假象通過關聯交易查詢,都可以很快發現蛛絲馬跡,讓企業造假暴露原形,可防止銀行上當受騙。
大數據風控相對於傳統風控來說,建模方式和原理其實是一樣的,其核心是側重在利用更多維的數據,更多互聯網的足跡,更多傳統金融沒有觸及到的數據。比如電商的網頁瀏覽、客戶在app的行為軌跡、甚至GPS的位置信息等,這些信息看似和一個客戶是否可能違約沒有直接關系,但實則通過大量的數據累積,能夠產生出非常有效的識別客戶的能力。
在運行邏輯上,大數據風控不強調較強的因果關系,看重統計學上的相關性是大數據風控區別於傳統金融風控的典型特徵。傳統金融機構強調因果,講究兩個變數之間必須存在邏輯上能夠講通因果。
在數據維度這個層級,傳統金融風控和大數據風控還有一個顯著的區別在於傳統金融數據和非傳統金融數據的應用。傳統的金融數據包括上文中提及的個人社會特徵、收入、借貸情況等等。而互金公司的大數據風控,採納了大量的非傳統金融數據。
相對於傳統金融機構,互金公司擴大了非傳統數據獲取的途徑,對於新客戶群體的風險定價,是一種風險數據的補充。當然,這些數據的金融屬性有多強,仍然有待驗證。
巨頭優勢明顯,並不代表創業公司的路已被堵死。大公司不可能面面俱到,布局各種場景。在互聯網巨頭尚未涉及的領域,小步快跑,比巨頭更早的搶下賽道,拿到數據,並且優化自己的數據應用能力,成為創業公司殺出重圍的一條路徑。

『陸』 大數據金融風控解決方案哪些公司可以提供

我們就是可以的,大數據風控即大數據風險控制,是指利用數據分析和模型進行風險評專估,為金融行業和個屬人用戶提供全方位的安全保障。
大數據風控流程的建立主要分為四個階段:數據收集、數據建模、構建客戶評分體系及監測分析。收集到海量數據後,需經過大量的清洗、探索與抽樣,運用靈活策略來交叉匹配並綜合分析,構建出客戶評分體系。
基於先進的風控分析模型,以及准確、穩定、實時更新的豐富數據源,利用精密演算法和靈活策略進行綜合高效的監測分析,保障業務平台健康穩定運行。

『柒』 銀行或金融單位的數據分析崗需要具備什麼能力

最重要還是數據治理和數據分析的能力!

近年來,隨著大數據產業的蓬勃發展,企業和政府對於自身數據資產的價值也產生了重新的認識。但遺憾的是數據本身並不能直接產生價值。當我們想利用數據產生價值的時候,很多問題都會暴露出來,比如:數據標准缺失,數據源頭不清晰,數據質量缺乏監管等。這就要求我們要有統一的數據標准和良好的數據質量來構成數據價值實現的基礎。而數據治理恰是保障這一基礎的存在。

國際數據管理協會(DAMA)對數據治理給出的定義是:數據治理是對數據資產管理行使權力和控制的活動集合。它是一個管理體系,包括組織、制度、流程、工具。

在國內企業的實際應用中,一般將數據治理和數據管理綜合考慮,認為數據治理是將數據作為組織資產而展開的一系列的集體化工作,包括從組織架構、管理制度、操作規范、信息技術應用、績效考核支持等多個維度對組織的數據模型、數據架構、數據質量、數據安全、數據生命周期等方面進行全面的梳理、建設以及持續改進的過程。

五、 數據和AI中台

隨著金融業正在邁入第四個重大發展階段--數字化時代,給各金融機構帶來了發展機遇,同時也伴隨著嚴峻的挑戰。如何解決數據孤島、新應用與老系統結合難?現有IT能力不足以支撐業務的快速變化?數據調用方式多樣且標准不統一質量差?以及數據資源未被挖掘數字化能力得不到釋放等問題,是企業面臨的共同難題。數據集成和數據資產管理是解決這些問題的有效途徑之一。

本課程將從如何進行有效的數據集成、各種數據平台建設介紹、如何有效開展數據治理,以及數據資產管理與數據中台的建設這四個大的方面進行開展。幫助企業在數字化進程中快速建立系統間的數據集成體系,支撐用戶數據集成應用的快速實現;提供完善數據管理體系和有效的完成數據整合方案,支撐起上層數據的挖掘、分析應用;對企業的發展戰略和業務創新提供有效的數據支撐,洞察企業的運營狀態和市場趨勢等,提高企業新業務靈活性,創建數據應用敏捷環境。

『捌』 大數據風控數據分析師有前途嗎

大數據風控數據分析師是一個不錯的崗位
首先,大數據技術扔在不斷的發版展中,未來科技權必定是數據驅動發展的。
其次,大數據風控目前應該是前沿技術在金融領域的最成熟應用,有廣泛的應用場景。
所以,這個崗位很不錯,縱深發展或者轉型其他數據領悟都是可以的。

『玖』 大數據怎麼做金融風控

這個要分好幾個點,一個是數據源的多樣性和有效性;第二是建模方法的科學性。

『拾』 相比銀行傳統風控,大數據風控對比傳統風控有優勢嗎

有很大的優勢,傳統的信貸風控主要以人工審批為主,人工審核一般需要2-3周以上時間才能實現放款,效率低下,流程繁瑣,互聯網金融往往小額量大,放款速度加快至關重要。面對個人信用體系不完善、惡意騙貸、壞賬和逾期、債務收回成本較高等諸多挑戰,用自動化的數據智能風控體系來提升整個流程的效率是必然的發展趨勢。

閱讀全文

與銀行金融風控大數據分析相關的資料

熱點內容
天天理財可靠嗎 瀏覽:583
狗年貴金屬展銷名稱 瀏覽:145
期貨螺紋穩定嗎 瀏覽:719
滬深股通資金流入公式 瀏覽:352
貸款企業調查報告 瀏覽:336
中青寶股票現在什麼價格 瀏覽:677
13萬奈拉等於多少人民幣 瀏覽:477
公募債券資金發放日 瀏覽:193
300368資金流向 瀏覽:443
雄安能源股票 瀏覽:75
招商現金增值基金匯添富貨幣基金 瀏覽:85
韓幣69000是人民幣多少 瀏覽:61
平安車保險可以貸款嗎 瀏覽:736
小米貸款網址 瀏覽:400
2013年鋼材價格 瀏覽:160
現役軍人抵押貸款 瀏覽:560
4萬日元等於多少元人民幣 瀏覽:169
融資城董事長 瀏覽:353
長城轉債價格 瀏覽:800
8歐元摺合人民幣匯率 瀏覽:623