A. 數據分析方法都有哪些
大家都知道,每個人都有自己的想法,在數據分析領域也是一樣的。不同的數據分析師對於數據分析的方法都有自己的見解,而數據分析的方法中最重要的作用就是能夠把某一事物的數據轉化成平常人都能夠清楚明白的見解,如果做到了這些,我們可以說這就是一個成功的數據分析師。那麼對於數據分析師來說,使用一些工具可以更好地理解和分析數據的價值,有一個完整的數據分析體系是一個至關重要的事情,而常用的四種數據分析方法有:描述型分析、診斷型分析、預測型分析和指令型分析。那麼這些數據分析方法具體是什麼內容呢?下面我們就簡單的給大家介紹一下。
首先我們說一下描述型分析,描述性分析就是表達發生了什麼?我們在分析事情之前,首先會考慮發生了什麼?這樣我們才會有目標的分析事情,而描述型分析就是這樣的,描述型分析師一個比較常見的分析方法, 在很多業務中用描述性分析進行對企業的重要指標個業務進行衡量,通過利用可視化工具能夠有效的挖掘所提供信息的價值。
然後我們說一說診斷型分析,診斷性分析就是表達為什麼會發生?當我們發現的事情發生的開始,我們就要對事情進行進一步的研究,探究事情發生的原因。於是就需要描述性的數據分析的下一步步驟,那就是診斷型分析,而診斷分析能夠使數據分析師深入的分析數據,這樣才能夠有機會去獲得數據的核心內容。
接著我們說一下預測型分析,預測性分析就是表達可能發生什麼?當我們分析完了事情發生的原因,需要對事情的進行預判,很多的事情都是有預兆性質的,所以我們需要對事情進行預測性分析,預測型分析主要就是用於進行預測分析,事情未來發生的可能性可以轉變成一種可以量化的值,或者是預估事情發生的時間,可以使用各種可變的數據進行預測,在不確定的環境下,預測性分析可以做出更好的決定,很多領域都用到了預測模型。
而指令型分析就是表達需要做什麼?上述提到的三種分析都是對於事情的分析,但不是對於解決事情做出分析,我們對事情的分析的目的就是為解決事情,通過用戶的實際情況確定最佳的解決方案,這樣才能夠為事情做出最適合的解決方案。這種分析就是指令性分析。
通過上面對數據分析方法的描述,相信大家已經了解了數據分析方法了吧?大家在進行數據分析的時候用到上面提到的數據分析方法,這樣才能夠對於某種事情進行分析,同時在大家進行分析的時候可以根據上面的順序進行分析,這樣才能夠分析出一個比較准確地結果,希望大家能夠熟練運用好這些數據分析方法。
B. 數據統計分析方法有哪些
這種籠統的問題,網路上一搜就有。
關鍵字:數據分析方法
C. 數據分析的基本方法有哪些
數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
D. 管理的數量分析方法
數量分析方法的含義
對事物進行研究,離不開數量分析。數量分析是深入認識事物的基本途徑之一。在質與量的密切聯系中,一定事物的質總是表現為一定的數量。事物的質總是以一定的量的積累為基礎,因此,對事物的認識從量入手,可以更好地把握事物固有的本質特徵和基本的規律性。
盡管研究事物量的目的仍然是為了更好地認識事物的質,而且定量分析與定性分析在認識事物的過程中都是十分重要的,但是定性分析的目的是通過邏輯分析、相互比較和基本推理來認識事物固有的本質特徵,一般通過訪談、觀察和綜合來實現;而定量分析是通過對數據的研究來表徵事物的特徵,一般除需要根據事物本身特徵,通過觀察、綜合外,還常常需要選擇分析工具,進行定量分析。因而,在某種程度上講,認識事物的本質特徵,定量分析比定性分析更具有客觀性和易操作性。為了進行更科學的定量分析,作為定量分析的方法體系,數量分析方法近年來越來越受到人們的重視。
數量分析方法的含義有廣義和狹義之分。廣義上講,研究事物的數量特徵、數量關系和數量界限需要一系列特有的和通用的方法,所有這些方法統稱為數量分析方法。
從狹義上講,數量分析方法是在一定的理論指導下,遵照數學和統計學的有關原理,通過處理有關數據,建立數量模型,從而對經濟現象的數量特徵、數量關系和數量界限進行研究、分析和決策的一系列方法的總稱。