A. 大數據分析平台那家好,有給推薦個比較好的平台。
最權威的當屬NLPIR了。
NLPIR由專注於大數據科學研究與工程應用融合領域的十多名博士碩士,傾力15年,持續創新而構建,該平台分別獲得了2010年錢偉長中文信息處理科學技術獎一等獎,國際與國內公開第三方的獨立評測綜合第一名。綜合平衡了效果與效率,實現了 「又好又快」的技術追求。
普適優勢
NLPIR提供雲服務,更多的是提供第三方二次開發介面,你無需訪問我們的伺服器,確保自身信息內容的安全性,開發平台兼容當前所有主流的操作系統與開發語言。
經驗優勢
十餘年中,NLPIR先後服務了全球30萬家機構。其中涵蓋了中央網信辦、中國證監會、中國人民銀行、國家統計局、國家氣象局等國家機構,中信信託、華為、人民網、中國移動、中國郵政等大型商業機構,以及中國科學院、清華大學、中國科技信息情報研究所等科研機構。
B. 數據分析和大數據平台網站有哪些
無需編程即可用來數據分析的工具/軟體,推薦幾個:
Excel / Spreadsheet:http://www.openoffice.org/download/
Trifacta:https://www.trifacta.com/start-wrangling/
Rapid Miner:https://rapidminer.com/
Rattle GUI:https://cran.r-project.org/bin/windows/base/
Orange:http://orange.biolab.si/
Tableau Public:https://public.tableau.com/s/
Talend:http://openrefine.org/download.html
C. 銀行呼叫中心大數據分析
首先銀行的呼叫中心一定會累計大量的客戶數據。有了這些數據,就可以定義維度,把客戶的年齡,性別,提供的問題,銀行賬戶存款等等一些客戶經理或者銷售人員所關心的維度作為標准,把客戶利用大數據分析的一些聚類,協同演算法去進行分類。比如可能一些客戶會詢問一些理財產品,我們就可以把和這些客戶類似的客戶利用大數據分析出來,推送給客戶經理去推薦一些理財產品,增加業績。
D. 銀行客戶數據分析平台有哪些差異是自己公司搭建,還是用第三方的
商業銀行擁有大量的個人客戶交易數據、個人客戶服務數據和個人客戶基本資料數據。在這些海量數據中,隱藏著大量的有價值的客戶信息。運用BI大數據挖掘中的數據可視化技術可以從這些數據集中提取客戶的分類知識。大數據商業智能BI技術可以將性質,特徵近似的數據對象歸屬再相同的群集中,商業銀行可以利用此技術分辨出能有效為之服務的最有價值的客戶,為他們提供更為個性化的服務,從而影響相關的客戶行為並最終達到提高盈利的目的。
從這里可以看出搭建這套銀行客戶分析系統比較復雜,需要較多的資源,除非公司的技術實力非常強大,否則不建議自己去搭,人力物力成本都太高。
像中信、華夏等銀行他們用的銀行客戶數據分析都是找的永洪科技,大平台效果還是非常顯著的,這家廠商好像是從底層架構的資料庫到最終的前端可視化平台都能做,而且還會幫助銀行數據分析部門去分析客戶指標,搭建完整的數據體系。這樣對於銀行來說,即使沒有專業的數據分析師,也能夠擁有一套比較簡單快捷的數據體系。
E. 河北邢台銀行大數據平台「智慧微貸系統」怎麼樣
近日,邢台銀行大數據平台的重要應用場景之一——「智慧微貸系統」正式上線運營,該系統以最先進的大數據技術為支撐,能夠為邢台銀行實現微貸業務處理的流程化、標准化和規范化,更加高效、廣泛、便捷地助力小微企業融資。
據了解,邢台銀行自2010年成立了小企業信貸中心,專門服務個體工商戶和小微企業,已累計支持小微企業4萬多戶、120多億元。近年來,隨著經濟新常態的出現和「雙創」戰略的提出,小微企業的數量迅猛增長,在我國經濟發展中的作用和地位更加凸顯。
F. 金融需要 hadoop,spark 等這些大數據分析工具嗎使用場景是怎樣的
看看用億信ABI做的相關案例
銀行大數據應用
國內不少銀行已經開始嘗試通過大數據來驅動業務運營,如中信銀行信用卡中心使用大數據技術實現了實時營銷,光大銀行建立了社交網路信息資料庫,招商銀行則利用大數據發展小微貸款。總的來看銀行大數據應用可以分為四大方面:
1、客戶畫像
客戶畫像應用主要分為個人客戶畫像和企業客戶畫像。個人客戶畫像包括人口統計學特徵、消費能力數據、興趣數據、風險偏好等;企業客戶畫像包括企業的生產、流通、運營、財務、銷售和客戶數據、相關產業鏈上下游等數據。值得注意的是,銀行擁有的客戶信息並不全面,基於銀行自身擁有的數據有時候難以得出理想的結果甚至可能得出錯誤的結論。比如,如果某位信用卡客戶月均刷卡8次,平均每次刷卡金額800元,平均每年打4次客服電話,從未有過投訴,按照傳統的數據分析,該客戶是一位滿意度較高流失風險較低的客戶。但如果看到該客戶的微博,得到的真實情況是:工資卡和信用卡不在同一家銀行,還款不方便,好幾次打客服電話沒接通,客戶多次在微博上抱怨,該客戶流失風險較高。所以銀行不僅僅要考慮銀行自身業務所採集到的數據,更應考慮整合外部更多的數據,以擴展對客戶的了解。包括:
(1)客戶在社交媒體上的行為數據(如光大銀行建立了社交網路信息資料庫)。通過打通銀行內部數據和外部社會化的數據可以獲得更為完整的客戶拼圖,從而進行更為精準的營銷和管理;
(2)客戶在電商網站的交易數據,如建設銀行則將自己的電子商務平台和信貸業務結合起來,阿里金融為阿里巴巴用戶提供無抵押貸款,用戶只需要憑借過去的信用即可;
(3)企業客戶的產業鏈上下游數據。如果銀行掌握了企業所在的產業鏈上下游的數據,可以更好掌握企業的外部環境發展情況,從而可以預測企業未來的狀況;
(4)其他有利於擴展銀行對客戶興趣愛好的數據,如網路廣告界目前正在興起的DMP數據平台的互聯網用戶行為數據。
2、精準營銷
在客戶畫像的基礎上銀行可以有效的開展精準營銷,包括:
(1)實時營銷。實時營銷是根據客戶的實時狀態來進行營銷,比如客戶當時的所在地、客戶最近一次消費等信息來有針對地進行營銷(某客戶採用信用卡采購孕婦用品,可以通過建模推測懷孕的概率並推薦孕婦類喜歡的業務);或者將改變生活狀態的事件(換工作、改變婚姻狀況、置居等)視為營銷機會;
(2)交叉營銷。即不同業務或產品的交叉推薦,如招商銀行可以根據客戶交易記錄分析,有效地識別小微企業客戶,然後用遠程銀行來實施交叉銷售;
(3)個性化推薦。銀行可以根據客戶的喜歡進行服務或者銀行產品的個性化推薦,如根據客戶的年齡、資產規模、理財偏好等,對客戶群進行精準定位,分析出其潛在金融服務需求,進而有針對性的營銷推廣;
(4)客戶生命周期管理。客戶生命周期管理包括新客戶獲取、客戶防流失和客戶贏回等。如招商銀行通過構建客戶流失預警模型,對流失率等級前20%的客戶發售高收益理財產品予以挽留,使得金卡和金葵花卡客戶流失率分別降低了15個和7個百分點。
3、風險管理與風險控制
在風險管理和控制方麵包括中小企業貸款風險評估和欺詐交易識別等手段
(1)中小企業貸款風險評估。銀行可通過企業的產、流通、銷售、財務等相關信息結合大數據挖掘方法進行貸款風險分析,量化企業的信用額度,更有效的開展中小企業貸款。
(2)實時欺詐交易識別和反洗錢分析。銀行可以利用持卡人基本信息、卡基本信息、交易歷史、客戶歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎(如從一個不經常出現的國家為一個特有用戶轉賬或從一個不熟悉的位置進行在線交易)進行實時的交易反欺詐分析。如IBM金融犯罪管理解決方案幫助銀行利用大數據有效地預防與管理金融犯罪,摩根大通銀行則利用大數據技術追蹤盜取客戶賬號或侵入自動櫃員機(ATM)系統的罪犯。
4、運營優化
(1)市場和渠道分析優化。通過大數據,銀行可以監控不同市場推廣渠道尤其是網路渠道推廣的質量,從而進行合作渠道的調整和優化。同時,也可以分析哪些渠道更適合推廣哪類銀行產品或者服務,從而進行渠道推廣策略的優化。
(2)產品和服務優化:銀行可以將客戶行為轉化為信息流,並從中分析客戶的個性特徵和風險偏好,更深層次地理解客戶的習慣,智能化分析和預測客戶需求,從而進行產品創新和服務優化。如興業銀行目前對大數據進行初步分析,通過對還款數據挖掘比較區分優質客戶,根據客戶還款數額的差別,提供差異化的金融產品和服務方式。
(3)輿情分析:銀行可以通過爬蟲技術,抓取社區、論壇和微博上關於銀行以及銀行產品和服務的相關信息,並通過自然語言處理技術進行正負面判斷,尤其是及時掌握銀行以及銀行產品和服務的負面信息,及時發現和處理問題;對於正面信息,可以加以總結並繼續強化。同時,銀行也可以抓取同行業的銀行正負面信息,及時了解同行做的好的方面,以作為自身業務優化的借鑒。
G. 請舉例金融機構銀行大數據的應用有哪些
1、精準營銷: 互聯網時代的銀行在互聯網金融的沖擊下,迫切的需要掌握更多用戶信息內,繼而構建容用戶360度立體畫像,即可對細分的客戶進行精準營銷、實時營銷等個性化智慧營銷。
2、風險控制: 應用大數據技術,可以統一管理銀行內部多源異構數據與外部徵信數據,可以更好的完善風控體系。內部可保障數據的完整性與安全性,外部可控制用戶風險。
3、改善經營:通過大數據分析方法改善經營決策,為管理層提供可靠的數據支撐,使經營決策更加高效、敏捷,精確性更高。
4、服務創新:通過對大數據的應用,改善與客戶之間的交互、增加用戶粘性,為個人與政府提供增值服務,不斷增強銀行業務核心競爭力。