『壹』 大數據分析的概念和方法
一、大數據分析的五個基本方面
1,可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2,數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3,預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4,語義引擎
大數據分析廣泛應用於網路數據挖掘,可從用戶的搜索關鍵詞、標簽關鍵詞、或其他輸入語義,分析,判斷用戶需求,從而實現更好的用戶體驗和廣告匹配。
5,數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。 大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
二、如何選擇適合的數據分析工具
要明白分析什麼數據,大數據要分析的數據類型主要有四大類:
1.交易數據(TRANSACTION DATA)
大數據平台能夠獲取時間跨度更大、更海量的結構化交易數據,這樣就可以對更廣泛的交易數據類型進行分析,不僅僅包括POS或電子商務購物數據,還包括行為交易數據,例如Web伺服器記錄的互聯網點擊流數據日誌。
2.人為數據(HUMAN-GENERATED DATA)
非結構數據廣泛存在於電子郵件、文檔、圖片、音頻、視頻,以及通過博客、維基,尤其是社交媒體產生的數據流。這些數據為使用文本分析功能進行分析提供了豐富的數據源泉。
3.移動數據(MOBILE DATA)
能夠上網的智能手機和平板越來越普遍。這些移動設備上的App都能夠追蹤和溝通無數事件,從App內的交易數據(如搜索產品的記錄事件)到個人信息資料或狀態報告事件(如地點變更即報告一個新的地理編碼)。
4.機器和感測器數據(MACHINE AND SENSOR DATA)
這包括功能設備創建或生成的數據,例如智能電表、智能溫度控制器、工廠機器和連接互聯網的家用電器。這些設備可以配置為與互聯網路中的其他節點通信,還可以自動向中央伺服器傳輸數據,這樣就可以對數據進行分析。機器和感測器數據是來自新興的物聯網(IoT)所產生的主要例子。來自物聯網的數據可以用於構建分析模型,連續監測預測性行為(如當感測器值表示有問題時進行識別),提供規定的指令(如警示技術人員在真正出問題之前檢查設備)
『貳』 大數據分析有哪些基本方向
【導讀】跟著大數據時代的降臨,大數據剖析也應運而生。隨之而來的數據倉庫、數據安全、數據剖析、數據發掘等等環繞大數據的商業價值的使用逐漸成為職業人士爭相追捧的利潤焦點。那麼,大數據剖析有哪些根本方向呢?
1.可視化剖析
不管是對數據剖析專家仍是普通用戶,數據可視化是數據剖析東西最根本的要求。可視化能夠直觀的展現數據,讓數據自己說話,讓觀眾聽到成果。
2.數據發掘演算法
可視化是給人看的,數據發掘便是給機器看的。集群、切割、孤立點剖析還有其他的演算法讓咱們深入數據內部,發掘價值。這些演算法不只要處理大數據的量,也要處理大數據的速度。
3.猜測性剖析才能
數據發掘能夠讓剖析員更好的理解數據,而猜測性剖析能夠讓剖析員根據可視化剖析和數據發掘的成果做出一些猜測性的判別。
4.語義引擎
咱們知道由於非結構化數據的多樣性帶來了數據剖析的新的應戰,咱們需求一系列的東西去解析,提取,剖析數據。語義引擎需求被設計成能夠從「文檔」中智能提取信息。
5.數據質量和數據管理
數據質量和數據管理是一些管理方面的最佳實踐。經過標准化的流程和東西對數據進行處理能夠保證一個預先界說好的高質量的剖析成果。
6.數據存儲,數據倉庫
數據倉庫是為了便於多維剖析和多角度展現數據按特定形式進行存儲所建立起來的聯系型資料庫。在商業智能系統的設計中,數據倉庫的構建是關鍵,是商業智能系統的根底,為商業智能系統供給數據抽取、轉換和載入(ETL),並按主題對數據進行查詢和拜訪,為聯機數據剖析和數據發掘供給數據平台。
以上就是小編今天給大家整理分享關於「大數據分析有哪些基本方向?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
『叄』 大數據分析具體包括哪幾個方面
1. Analytic Visualizations(可視化分析)不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. Data Mining Algorithms(數據挖掘演算法)可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. Predictive Analytic Capabilities(預測性分析能力)數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. Semantic Engines(語義引擎)我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。
5. Data Quality and Master Data Management(數據質量和數據管理)數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
關於大數據分析具體包括哪幾個方面,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『肆』 大數據分析的基礎包括哪五個方面
大數據分析是指對規模巨大的數據進行分析。大數據可以概括為5個V, 數據量大(Volume)、速度快(Velocity)、類型多(Variety)、Value(價值)、真實性(Veracity)。大數據作為時下最火熱的IT行業的詞彙,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等等圍繞大數據的商業價值的利用逐漸成為行業人士爭相追捧的利潤焦點。隨著大數據時代的來臨,大數據分析也應運而生
『伍』 大數據的基本特點有哪些
大數據的基本特點為:
1、容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。
2、種類(Variety):數據類型的多樣性。
3、速度(Velocity):指獲得數據的速度。
4、可變性(Variability):妨礙了處理和有效地管理數據的過程。
5、真實性(Veracity):數據的質量。
6、復雜性(Complexity):數據量巨大,來源多渠道。
7、價值(value):合理運用大數據,以低成本創造高價值。
(5)大數據分析的五個基本方面擴展閱讀:
大數據分析的六個基本方面:
1、Analytic Visualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2、Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
4、Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
5、數據存儲,數據倉庫
數據倉庫是為了便於多維分析和多角度展示數據按特定模式進行存儲所建立起來的關系型資料庫。在商業智能系統的設計中,數據倉庫的構建是關鍵,是商業智能系統的基礎,承擔對業務系統數據整合的任務,為商業智能系統提供數據抽取、轉換和載入(ETL),並按主題對數據進行查詢和訪問,為聯機數據分析和數據挖掘提供數據平台。
參考資料來源:網路-大數據
『陸』 大數據的基本分析框架主要包括哪幾個方面
用url傳參數都可以控制了這個..
『柒』 大數據分析需掌握哪些方面
1.Analytic Visualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2.Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3.Predictive Analytic Capabilities(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4.Semantic Engines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。
5.Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
關於大數據分析需掌握哪些方面,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『捌』 大數據分析的五個基本方面都是哪些
1、預測性分析能力
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可 視化分析和數據挖掘的結果做出一些預測性的判斷。
2、 數據質量和數據管理
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
3、可視化分析
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
4、 語義引擎
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息.
5、 數據挖掘演算法
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
『玖』 大數據分析的分析步驟
大數據分析的五個基本方面
1. Analytic Visualizations(可視化分析)不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. Data Mining Algorithms(數據挖掘演算法)可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. Predictive Analytic Capabilities(預測性分析能力)數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. Semantic Engines(語義引擎)我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
5. Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
『拾』 大數據的概念要從哪幾個方面進行分析理解
大數據概念包含幾個方面的內涵吧
1. 數據量大,TB,PB,乃至EB等數據量的數據需要分析處理。
2. 要求快速響應,市場變化快,要求能及時快速的響應變化,那對數據的分析也要快速,在性能上有更高要求,所以數據量顯得對速度要求有些「大」。
3. 數據多樣性:不同的數據源,非結構化數據越來越多,需要進行清洗,整理,篩選等操作,變為結構數據。
4. 價值密度低,由於數據採集的不及時,數據樣本不全面,數據可能不連續等等,數據可能會失真,但當數據量達到一定規模,可以通過更多的數據達到更真實全面的反饋。
很多行業都會有大數據需求,譬如電信行業,互聯網行業等等容易產生大量數據的行業,很多傳統行業,譬如醫葯,教育,采礦,電力等等任何行業,都會有大數據需求。
隨著業務的不斷擴張和歷史數據的不斷增加,數據量的增長是持續的。
如果需要分析大數據,則可以Hadoop等開源大數據項目,或Yonghong Z-Suite等商業大數據BI工具。
隨著互聯網和移動的快速發展,大數據在各個領域不斷增加應用。也越來越面向個人大數據應用。