Ⅰ 早期工業工程主要分析方法有哪些
工業工程的基本方法
導入:在各類工業工程的實踐中,已形成了許多具有通用性、能較好的體現工業工程思想及工作過程的基本方法,如系統工程中的霍爾三維結構、切克蘭德方法論和5W1H、列舉法、頭腦風暴、情景分析、肯定式探詢等創造性方法,以及多年實踐所積累下來的應用工業工程所應遵從的一些原則。這些方法、技術和原則在現代工業工程中具有重要的方法論意義,是各種工業工程專門技術的基礎。下面我將具體介紹幾種基本方法:
一、KJ法
概念:KJ法是將未知的問題、未曾接觸過領域的問題的相關事實、意見或設想之類的語言文字資料收集起來,並利用其內在的相互關系作成歸類合並圖,以便從復雜的現象中整理出思路,抓住實質,找出解決問題的途徑的一種方法。
特點:在比較分類的基礎上由綜合求創新。在對卡片進行綜合整理時,既可由個人進行,也可以集體討論。
范圍:
1.常用於以下生產管理活動中:
①迅速掌握未知領域的實際情況,找出解決問題的途徑。
②對於難以理出頭緒的事情進行歸納整理,提出明確的方針和見解。
③通過管理者和員工的一起討論和研究,有效地貫徹和落實企業的方針政策。
④成員間互相啟發,相互了解,促進了為共同的目的的有效合作。
2.在全面質量管理活動中,KJ法是尋找質量問題的重要工具:
①制訂推行全面質量管理的方針和目標。
②制訂發展新產品的方針、目標和計劃。
③用於產品市場和用戶的質量調查。
④促進質量管理小組活動的開展。
⑤協調各部門的意見,共同推進全面質量管理。
⑥調查協作廠的質量保證活動狀況。
步驟:
1.確定對象(或用途)。KJ法適用於解決那種非解決不可,且又允許用一定時間去解決的問題。對於要求迅速解決、「急於求成」的問題,不宜用KJ法。
2.收集語言、文字資料。收集時,要尊重事實,找出原始思想(「活思想」、「思想火花」)。
註解:收集這種資料的方法有三種:
①直接觀察法,即到現場去看、聽、摸,吸取感性認識,從中得到某種啟發,立即記下來。
②面談閱覽法,即通過與有關人談話、開會、訪問,查閱文獻、集體BS法(Brain Storming「頭腦風暴」法)來收集資料。
③個人思考法(個人BS法),即通過個人自我回憶,總結經驗 來獲得資料。通常,應根據不同的使用目的對以上收集資料的方法進行適當選擇。
3.把所有收集到的資料,包括「思想火花」,都寫成卡片。
4.整理卡片。對於這些雜亂無章的卡片,不是按照已有的理論和分類方法來整理,而是把自己感到相似的歸並在一起,逐步整理出新的思路來。
5.把同類的卡片集中起來,並寫出分類卡片。
6.根據不同的目的,選用上述資料片段,整理出思路,寫出文出來。
二、防呆法(愚巧法)
概念:防呆法,日本的質量管理專家、著名的豐田生產體系創建人新江滋生根據其長期從事現場質量改進的豐富經驗,首創的概念,並將其發展成為用以獲得零缺陷,最終免除質量檢驗的工具。
特點:具有即使有人為疏忽也不會發生錯誤的構造──不需要注意力;具有外行人來做也不會錯的構造──不需要經驗與直覺;具有不管是誰或在何時工作都不會出差錯的構造──不需要專門知識與高度的技能。
功用:1.積極:使任何的錯誤,絕不會發生。
2.消極:使錯誤發生的機會減至最低程度。
應用:任何工作無論是在機械操作,產品使用上,以及文書處理上皆可應用到。
原則:使作業的動作輕松;使作業不要技能與直覺;使作業不會有危險;使作業不依賴感官。
步驟 :1、發現人為疏忽
2、設定目標,制定實施計書
3、調查人為疏的原因
4、提出防錯法的改善案
5、實施改善
Ⅱ 什麼是霍爾三維結構模型分析法
霍爾三維結構又稱霍爾的系統工程,後人與軟系統方法論對比,稱為硬系統方法論(Hard System Methodology ,HSM).是美國系統工程專家霍爾(A·D·Hall)於1969年提出的一種系統工程方法論.它的出現,為解決大型復雜系統的規劃、組織、管理問題提供了一種統一的思想方法,因而在世界各國得到了廣泛應用.霍爾三維結構是將系統工程整個活動過程分為前後緊密銜接的七個階段和七個步驟,同時還考慮了為完成這些階段和步驟所需要的各種專業知識和技能.這樣,就形成了由時間維、邏輯維和知識維所組成的三維空間結構.其中,時間維表示系統工程活動從開始到結束按時間順序排列的全過程,分為規劃、擬定方案、研製、生產、安裝、運行、更新七個時間階段.邏輯維是指時間維的每一個階段內所要進行的工作內容和應該遵循的思維程序,包括明確問題、確定目標、系統綜合、系統分析.優化、決策、實施七個邏輯步驟.知識維列舉需要運用包括工程、醫學、建築、商業、法律、管理、社會科學、藝術、等各種知識和技能.三維結構體系形象地描述了系統工程研究的框架,對其中任一階段和每一個步驟,又可進一步展開,形成了分層次的樹狀體系.
Ⅲ 三維測量技術的方法及應用
光學主動式三維測量
目前,主動式光學三維測量測量技術已廣泛用於工業檢測、反求工程、生物醫學、機器視覺等領域。例如,復雜的葉輪和葉片的面形檢測,汽車車身的檢測,人類口腔牙型測量,整形外科效果評價,用於製鞋CAD的鞋楦三維數據採集,各種實物模型的三維信息記錄與仿形等。三維高速度、高精度測量技術將隨著測量方法的完善和信息獲取與處理技術的改進而進一步發展,在新的更加廣闊的研究和應用領域中發揮重要作用。
主動式光學非接觸測量技術大體上可分為飛行時間法、主動三角法、莫爾輪廓術、投影結構光法、自動聚焦法、離焦法、全息干涉測量法、相移測量法等。以下對幾種主要的方法進行以下簡單介紹。
3.2.1.飛行時間法
飛行時間法是基於三維面形對結構光束產生的時間調制,一般採用激光,通過測量光波的飛行時間來獲得距離信息,結合附加的掃描裝置使光脈沖掃描整個待測對象就可以得到三維數據。飛行時間法以對信號檢測的時間解析度來換取距離測量精度,要得到高的測量精度,測量系統必須要有極高的時間解析度,常用於大尺度遠距離的測量。
3.2.2.干涉法
干涉測量是將一束相干光通過分光系統分成測量光和參考光,利用測量光波與參考光波的相干疊加來確定兩束光之間的相位差,從而獲得物體表面的深度信息。這種方法測量精度高,但測量范圍受到光波波長的限制,只能測量微觀表面的形貌和微小位移,不適於大尺度物體的檢測。
3.2.3.主動三角法
光學三角法是最常用的一種光學三維測量技術,以傳統的三角測量為基礎,通過待測點相對於光學基準線偏移產生的角度變化計算該點的深度信息。根據具體照明方式的不同,光學三角法可分為兩大類:被動三角法和基於結構光的主動三角法。雙目視覺是典型的被動三維測量技術,它的優點在於其適應性強,可以在多種條件下靈活地測量物體的立體信息,缺點是需要大量的相關匹配運算以及較為復雜的空間幾何參數的校準等問題,測量精度低,計算量較大,不適於精密計量,常用於三維目標的識別、理解以及位形分析等場合,在航空領域應用較多。主動三維測量技術根據三維面形對於結構光場的調制方式不同,可分為時間調制和空間調制兩大類。飛行時間法是典型的時間調制方法,激光逐點掃描法、光切法和光柵投射法是典型的空間調制方法。
3.2.4.相移測量法
相移測量法是一種重要的三維測量方法,它採用正弦光柵投影和相移技術,投影在物體上的光柵,根據物體的高度而產生變形,變形的光柵圖像叫做條紋圖,它包含了三維信息。
相移法是一種在時間軸上的逐點運算,不會造成全面影響,計算量少。另外,這種方法具有一定抗靜態雜訊的能力。缺點是不能消除條紋中高頻雜訊引起的誤差。在傳統相移系統中,精確移動光柵的需要增加了系統的復雜性。而在數字相移系統中,用軟體控制精確地實現相位移動。某些應用場合不允許測量多幅圖像,但只要沒有以上限制,相移法仍然是首選方案。
Ⅳ §三維地質建模的方法體系
三維地質建模是一門高度交叉的學科,不同領域的學者從不同角度對三維地質建模的內涵進行了論述。Houlding(1994)最早提出了三維地學模擬(3D Geoscience Modeling)的概念,從廣義角度對三維地質建模進行了界定,將空間信息管理、地質解譯的圖形處理、空間地質統計、地質體的模擬、地質信息的可視化等統稱為三維地學模擬。Mallet(2002)將地質建模定義為能夠統一模擬地質對象的拓撲、幾何與物理屬性並且能夠考慮多源地質數據的數學方法的集合。
三維地質建模技術是以數字化與可視化手段刻畫地質實際、構建地質模型的工具,一個完整的三維地質模型應該具備以下特徵:
(1)地質模型所表示的地質對象具有明確的幾何形狀與空間位置,並與地質勘探數據吻合,所有幾何元素均以圖形與數字化的形式存在。
(2)具有有效的數據模型,所有幾何元素之間具有完備的拓撲關系。
(3)擁有有效的圖形與屬性資料庫支持,便於圖形與屬性信息的查詢與分析。
(4)地質模型是可視的、直觀的,真實感強。
上述特徵決定了三維地質建模方法所涵蓋的基本內容。三維地質建模方法是若干理論、方法與技術的集合體,主要涉及地質勘探數據的標准化處理、幾何造型、三維空間數據模型、屬性數據管理與圖形可視化等方面。圖1.1為三維地質建模的方法體系。
圖1.1 三維地質建模的方法體系
地質數據來源眾多,可靠程度不一,而且分布不均勻,建模時需要藉助地質方面的知識與經驗進行分析與處理,形成合理有效的信息源。地質勘探數據的標准化處理包括兩方面:一是對地質勘探數據進行系統的地質分析,保證數據的可靠性;二是制定標準的數據格式,對地質信息進行標准化處理。目前,各國學者在這方面的研究較少,還沒有形成統一的方法。
為了方便、簡潔、合理地表達、存儲與管理地質模型,必須建立有效的三維空間數據模型。簡單地說,三維空間數據模型就是指圖形數據的表示與存儲方式以及圖形元素之間的拓撲關系。常用的空間數據模型包括兩類:曲面表示模型與體元表示模型。曲面表示模型是指用曲面的組合來表示地質對象,例如,用地層界面圍成地層實體。目前,常見的曲面表示模型有邊界表示模型、表面模型與線框模型等。體元表示模型就是將地質對象離散成若干六面體、四面體、三稜柱等形式的體元,用體元的組合表示地質體。目前文獻報道較多的體元表示模型包括結構實體幾何模型、規則塊體模型、四面體模型、三稜柱模型、混合體元模型等。
幾何造型是三維地質建模的核心內容,是指根據地質地理數據,利用數學、幾何與地質分析方法重構地質對象的空間幾何形態,並利用點、線、面、體等基本幾何元素及其衍生的幾何元素表示地質對象的過程。例如,地層界面常用不規則三角網表示,建模時可以根據鑽孔數據進行插值運算,計算出三角網格結點的空間坐標,從而得到由空間三角形面片連接而成的地層界面。地質建模中常見的幾何造型方法包括邊界建模方法、線框建模方法、斷面建模方法、映射建模方法、塊段建模方法等。這些方法的思路、過程與實用性有一定的差異,但是,大多數方法都會涉及一些基本內容,如三角剖分與優化、插值計算、曲面細分與優化、曲面曲線求交、環與塊體搜索、空間體元剖分等。
圖形可視化就是在計算機屏幕上繪制出地質模型,利用材質、顏色與光照等手段實現真實感成像。屬性數據管理是指建立屬性資料庫,存儲與管理地質對象的物性參數,如地層名稱、岩性、力學參數等。在地質建模中,圖形可視化與資料庫技術與其他領域的相關內容類似,沒有明顯的特別之處,因此,本書不再詳細介紹相關內容。
Ⅳ 三維數據分析有哪些好的方法與軟體
分析軟體有Excel、SPSS、MATLAB、 SAS、Finereport等
SPSS是世界上最早採用圖形菜單驅動界面的統計軟體它將幾乎所有的功能都以統一、規范的界面展現出來。SPSS採用類似EXCEL表格的方式輸入與管理數據,數據介面較為通用,能方便的從其他資料庫中讀入數據。其統計過程包括了常用的、較為成熟的統計過程,完全可以滿足大部分的工作需要。
MATLAB是美國MathWorks公司出品的商業數學軟體,用於演算法開發、數據可視化、數據分析以及數值計算的高級技術計算語言和互動式環境使用的。
其優點如下:
1、高效的數值計算及符號計算功能,能使用戶從繁雜的數學運算分析中解脫出來;
2、 具有完備的圖形處理功能,實現計算結果和編程的可視化;
3、友好的用戶界面及接近數學表達式的自然化語言,使學者易於學習和掌握;
4、功能豐富的應用工具箱(如信號處理工具箱、通信工具箱等) ,為用戶提供了大量方便實用的處理工具。
但是這款軟體的使用難度較大,非專業人士不推薦使用。
SAS是把數據存取,管理,分析和展現有機地融為一體。其功能非常強大統計方法齊,全,新。它由數十個專用模塊構成,功能包括數據訪問、數據儲存及管理、應用開發、圖形處理、數據分析、報告編制、運籌學方法、計量經濟學與預測等。SAS系統基本上可以分為四大部分:SAS資料庫部分;SAS分析核心;SAS開發呈現工具;SAS對分布處理模式的支持及其數據倉庫設計。不過這款軟體的使用需要一定的專業知識,非專業人士不推薦使用。
Finereport類EXCEL設計模式,EXCEL+綁定數據列」形式持多SHEET和跨SHEET計算,完美兼容EXCEL公式,用戶可以所見即所得的設計出任意復雜的表樣,輕松實現中國式復雜報表。它的功能也是非常的豐富,比如說 數據支持與整合、聚合報表、數據地圖、Flash列印、交互分析等。
Ⅵ 三維地質建模方法
自20世紀80年代以來,研究人員提出了許多三維地質模型來模擬地質體,使這方面的研究有了長足的發展。通過對國內外大量的三維地質建模方面的文獻和專業軟體的研究分析,三維地質建模方法大體可歸納為三類:離散點源法、剖面框架法和多源數據耦合建模法。
1.2.3.1 離散點源法
在地質找礦中,經常需要根據少量的離散點采樣數據(如地質測繪或鑽孔資料)來獲取地質體的形狀,從而為進一步指導找礦起指導性的作用。因此,研究如何實現空間散亂點數據場可視化的方法具有一定的意義。
Carlson(1987)從地質學的角度提出了地下空間結構的三維概念模型,並提出用單純復形模型(Simplicial Complex Model)來建立地質模型。Victor(1993)、Pilout(1994)則具體應用Delaunay四面體的三維矢量數據模型研究離散點地質建模問題。Lattuada(1995)對3DDT(3 Dimensional Delaunay Triangulation)在地質領域內的應用進行了研究,表明四面體格網能很好地用於地質體的三維建模,優點包括:四面體單元易於建立索引;模型易於手工編輯;可通過相鄰關系導出拓撲結構;約束三角剖分易於實現面約束;四面體非常便於可視化,同時具有較高的表達精度;易於實現搜索和關系查詢等。Courrioux et al.(2001)基於Voronoi圖實現了地質對象實體的自動重構。Frank et al.(2007)採用隱函數法(implicit function)表達三維曲面,對離散點集進行三維重構(reconstruction),用來模擬斷層和鹽丘(salt dome)。楊欽(2001,2005)利用離散點源信息構建地層與斷層結構面,依此作為約束條件約束Delaunay剖分建立三維地質模型。
鑽孔數據也屬於一種點源信息。它實質上是將原始的點、線數據進行有效的分層,根據各層面標高應用曲面構造法來生成各個層面或實體。圍繞鑽孔數據進行三維地質建模已有許多學者進行了研究,其中較早利用鑽孔數據進行三維地質模擬的是加拿大學者Houlding(1994,2000),利用鑽孔孔口點位信息進行 Delaunay三角剖分,作為「主 TIN(Primary TIN)」,其他地層面則通過高程映射實現。張煜等(2001)對其建模方法進行了深入研究與發展,在垂直鑽孔的理想狀態下,採用三稜柱(Tri-prism,TP)數據模型建立三維地質模型,並給出了相關的剖切演算法。Lemon et al.(2003)採用「地層層位法」建立三維地層模型,並採用自定義剖面(user-defined cross-sections)的方法對地質模型進行局部交互修正。吳江斌(2003)、朱合華等(2003)提出一種基於鑽孔數據的二分拓撲數據結構的建模演算法,嘗試採用基於鑽孔數據的四面體體元模型構建地下三維地質模型;四面體結構在表達復雜結構上則較靈活,但是使用四面體表示空間實體會產生大量的冗餘,且生成四面體的演算法比較復雜。張芳(2005)採用Delaunay三角構網技術,利用鑽孔數據構建三維地層層面模型,同時引入「界面分片」思想,以適應於海量數據模型的可視化表達,但缺少對地質體屬性信息的表達。在三稜柱模型的基礎上,針對鑽孔存在偏斜問題,類三稜柱(Analogical Tri-prism,ATP)(齊安文等,2002)、廣義三稜柱(Generalized Tri-prism,GTP)(Wu,2004)方法先後被提出,用來進行三維地質建模,已被證明廣泛適應於礦山、石油等深部地質問題建模;同時,似三稜柱(Similar Triprism,STP)(Gong et al.,2004)也被提出用於解決鑽孔傾斜問題,如鄭蔚等(2005)基於鑽孔數據採用STP建立三維地質模型對地下空間進行虛擬漫遊。STP與GTP本質上是相同的。基於鑽孔數據建立三維地質建模,這一看似簡單的數據模型方法,經歷了10多年的發展歷程:從初期的TP數據模型,適用於鑽孔垂直成層、地層等厚的理想情況,發展到STP、GTP適用於鑽孔不垂直且地層不等厚的常見情況。
1.2.3.2 剖面框架法
剖面框架法就是在收集整理原始地質勘探資料的基礎上,建立分類資料庫,人工交互生成大量的二維地質剖面,然後應用曲面構造法生成各層位面表達三維地質模型,或者利用體元表示法直接進行地質體建模(Chae et al.,1999)。
利用地質剖面表達研究區域三維地質現象的初級形式是序列地質剖面法(朱小弟等,2001)。序列地質剖面構模技術實質是傳統地質制圖方法的計算機實現,即通過平面圖或剖面圖來描述地質構造,記錄地質信息,如圖1.2所示。其特點是將3D問題2D化,在空間上採用若干平行或近似平行的地質剖面來表達研究區域的地質分布特徵,但它在空間表達上是不完整的,它把剖面之間的地層或構造分布情況留給工程設計人員去「想像」。這種構模方法難以完整表達3D礦床及其內部構造。
基於剖面信息建立真三維模型具有很大的發展空間,對於復雜地質構造區域具有很好的適應性,成為當前地質建模的主要方法之一。然而,基於剖面進行三維重構得到完善發展的是在醫學領域,後來迅速擴展到其他領域。在醫學領域里,通過電腦斷層掃描(CAT)或者核磁共振(MRI)等技術,可以獲得一系列相互平行的人體切片圖像,通過提取對象的邊界,基於輪廓線演算法,生成三維人體模型。地質剖面信息同醫學切片信息一樣,都是反映研究對象的某一特定斷面上的構造分布,可以藉助醫學三維人體建模技術來構造三維地質模型。較早將醫學領域的切面三維建模引入地學領域的是在考古學方面的應用(Tipper,1976,1977;Herbert et al.,1995),主要應用在古生物的三維重構方面,而應用在三維地質建模方面的文獻並不很多。
圖1.2 序列地質剖面構模實例
公認的剖面三維重構的代表之作是Keppel的文章(Meyres et al.,1992;Herbert et al.,1995,2001;Xu et al.,2003;屈紅剛等,2003)。在Keppel的研究基礎上,Meyres(1992)將剖面建模方法分為4個子問題:對應問題(correspondence problem)、構網問題(tiling problem)、分支問題(branching problem)和光滑問題(fitting problem):①對應問題解決相鄰剖面之間的輪廓線匹配問題;②構網問題主要解決輪廓線之間的三角形構網問題,考慮滿足某個准則,例如最大體積法(Keppel,1975)、最小面積法(Fuchsetal.,1977)等;③分支問題是解決同一對象在不同剖面上的組成部分的個數不同的問題;④光滑問題主要解決將初始生成的三角網進行插值,從而得到更加光滑的三角網。
屈紅剛等(2003)提出基於含拓撲剖面地質建模方法來實現復雜地質的三維建模的對應問題,鄧飛等(2007)則對一般意義上的剖面地質建模進行了討論。
1.2.3.3 多源數據耦合建模法
隨著計算機性能的提高,具備了對海量數據的處理能力,人們對建立的地質模型要求也不斷提高,希望能夠建立高精度和高復雜度的地質模型(Turner,2003,2006;Calcagno et al.,2006;Kaufmann et al.,2008)。提高模型的精度可以通過插值的方法來實現,但更好的方法是通過增加約束信息來對初始地質模型進行細化,這就涉及耦合多源數據來建立地質模型的問題。
早在1993年,Houlding提出三維地學建模概念的時候就強調地質解釋信息具備對模型的修正(revision)功能。並且指出礦業工程有地質勘探數據、人工繪制數據及施工數據,還有不確定性的需要通過地質統計學進行估計的數據(Houlding,2000),最終的地質模型需要綜合考慮這些種類不同的數據。
McInerney et al.(2005a,b)認為三維地質建模只能部分上是一個數字地質采樣過程,更重要的是地質學家的人工解釋過程。並且尖銳地指出,不要指望一些計算機軟體能夠自動並成功地「建模」! 讓一個有經驗的地質學家輸入解釋性的信息進行建模,是現實和必要的;而軟體只是建模過程中提供便利的一個工具(There is no expectation that some computer software will successfully and automatically「builda model」! The reality is that interpretative input from a skilled geologist is essential to build a model;the software is simply a tool to facilitate the model-building process)。其要求實際上是,地質建模不僅要考慮地質勘探所獲取的確定性數據,還應加入地質工程人員對地質構造的解釋性數據,這就構成多源地質建模的基本思想。
Mallet(2002)針對地質體建模的特殊性和復雜性,以點、線數據為主要數據源,建立以三角形為基本單元的三維曲面,採用離散光滑插值技術(Discrete Smooth Interploate,DSI)使曲面的粗糙度最小,並作為GOCAD的核心技術,得到了許多地球物理公司和石油公司的支持。
相比較國外以石油、礦業工程為主要應用領域的三維地質建模,鍾登華等(2006)則從水利水電工程地質領域,研究多源地質數據建立壩區的三維地質模型。Wu et al.(2005)提出一種逐步細分的多源數據集成地質建模方法,考慮到地質數據大多比較稀疏和低采樣率的特徵,採用逐步細化的方法對初始地質模型不斷修正。
地質構造的復雜性和認識的階段性,使多源地質建模引起越來越多的研究興趣。32屆國際地質大會(International Geological Conference,IGC)於2004年在義大利佛羅倫薩召開,在「地質的復興(The Renaissance of Geology)」(Zanchi et al.,2007)議題上,多名國際知名的地學建模專家共同提到了多源地質建模問題。其中,Zanchi et al.(2008)藉助商業軟體對義大利境內阿爾卑斯山(Alps)利用多源地質建模問題進行研究,並應用於滑坡穩定性分析。西方發達國家主要將地質建模應用於能源與環境領域,這是為數不多的在工程建設領域開辟蹊徑的研究。無獨有偶,Kaufmann et al.(2008)嘗試採用多源地質建模,研究在廢棄煤礦巷道內進行天然氣儲存問題。
總體來看,三維地質建模技術是一個從簡單地層模擬到復雜地質構造模擬的發展過程。從最初基於單一數據建立簡單層狀三維地質模型,到綜合利用多源數據建立復雜地質模型,能夠反映地質構造的空間特徵。
Ⅶ 三維建模的基本流程
三維建模基本流程步驟如下:
1,打開CAD,然後在下面找到「切換工作區」選項。單擊此選項可在其子菜單中找到3D建模選項。
Ⅷ 什麼是霍爾三維結構模型分析法
霍爾三維結構又稱霍爾的系統工程,後人與軟系統方法論對比,稱為硬系統方法論(Hard System Methodology ,HSM)。是美國系統工程專家霍爾(A·D·Hall)於1969年提出的一種系統工程方法論。它的出現,為解決大型復雜系統的規劃、組織、管理問題提供了一種統一的思想方法,因而在世界各國得到了廣泛應用。霍爾三維結構是將系統工程整個活動過程分為前後緊密銜接的七個階段和七個步驟,同時還考慮了為完成這些階段和步驟所需要的各種專業知識和技能。這樣,就形成了由時間維、邏輯維和知識維所組成的三維空間結構。其中,時間維表示系統工程活動從開始到結束按時間順序排列的全過程,分為規劃、擬定方案、研製、生產、安裝、運行、更新七個時間階段。邏輯維是指時間維的每一個階段內所要進行的工作內容和應該遵循的思維程序,包括明確問題、確定目標、系統綜合、系統分析。優化、決策、實施七個邏輯步驟。知識維列舉需要運用包括工程、醫學、建築、商業、法律、管理、社會科學、藝術、等各種知識和技能。三維結構體系形象地描述了系統工程研究的框架,對其中任一階段和每一個步驟,又可進一步展開,形成了分層次的樹狀體系。下
Ⅸ 地質體三維建模方法
在分析三維空間建模方面的國內外大量研究文獻的基礎上,目前主要有四種類型的建模方法:基於體的建模方法、基於面的建模方法、混合建模方法(表1-1)以及泛權建模方法。
表1-1 3D空間建模方法分類
1.基於體的建模方法
體模型基於3D空間的體元分割和真3D實體表達,體元的屬性可以獨立描述和存儲,因而可以進行3D空間操作和分析。體元模型可以按體元的面數分為四面體(Tetrahedral)、六面體(Hexahedral)、稜柱體(Prismatic)和多面體(Polyhedral)等類型,也可以根據體元的規整性分為規則體元和不規則體元兩個大類。建模方法如下:
(1)規則塊體(Regular Block)建模;
(2)結構實體幾何(CSG)建模;
(3)3D體素(Voxel)建模;
(4)八叉樹(Octree)建模;
(5)針體(Needle)建模;
(6)四面體格網(TEN)建模;
(7)金字塔(Pyramid)模型;
(8)三稜柱(Tri-Prism,TP)建模;
(9)地質細胞(Geocellular)模型;
(10)不規則塊體(Irregular Block)建模;
(11)實體(Solid)建模;
(12)3D Voronoi圖模型;
(13)廣義三稜柱(GTP)建模。
2.基於面的建模方法
基於面模型的建模方法側重於3D空間實體的表面表示,如地形表面、地質層面、構築物(建築物)及地下工程的輪廓與空間框架。所模擬的表面可能是封閉的,也可能是非封閉的。基於采樣點的TIN模型和基於數據內插的Grid模型通常用於非封閉表面模擬;而B-Rep模型和Wire Frame模型通常用於封閉表面或外部輪廓模擬。Section模型、Section-TIN混合模型及多層DEM模型通常用於地質建模。通過表面表示形成3D空間目標輪廓,其優點是便於顯示和數據更新,不足之處由於缺少3D幾何描述和內部屬性記錄而難以進行3D空間查詢與分析。建模方法如下:
(1)TIN和Grid模型;
(2)邊界表示(B-Rep)模型;
(3)線框(Wire Frame)模型;
(4)斷面(Section)模型;
(5)斷面-三角網混合模型;
(6)多層DEM建模。
3.混合建模方法
基於面模型的建模方法側重於3D空間實體的表面表示,如地形表面、地質層面等,通過表面表示形成3D目標的空間輪廓,其優點是便於顯示和數據更新,不足之處是難以進行空間分析。基於體模型的建模方法側重於3D空間實體的邊界與內部的整體表示,如地層、礦體、水體、建築物等,通過對體的描述實現3D目標的空間表示,優點是易於進行空間操作和分析,但存儲空間大,計算速度慢。混合模型的目的則是綜合面模型和體模型的優點,以及綜合規則體元與不規則體元的優點,取長補短。主要包括如下混合建模方法:
(1)TIN-CSG混合建模;
(2)TIN-Octree混合建模;
(3)Wire Frame-Block混合建模;
(4)Octree-TEN混合建模;
(5)GTP-TEN混合建模。
4.泛權建模方法
陳樹銘認為地質三維領域中,地礦、石油的三維分析相對來說是比較簡單的,相比之下工程地質、水文地質等的三維分析更復雜,比如說在地礦、石油領域應用克里格方法基本就可以分析,但是對於工程地質、水文地質分析來說,克里格方法基本是不可行的。他認為目前主要有三類地質三維重構演算法,即剖面成面法、直接點面法,以及拓撲分析方法。在綜合應用概率統計、模糊、神經網路、插值、積分等理論的基礎上,構造了一種新演算法(他稱之為「泛權」演算法),其核心思想就是能對任意M維的連續、非連續邊界進行重構分析,並同時能耦合地模擬各種復雜背景因素的影響。
(1)剖面成面法。剖面成面法的基本思路是,在生成大量的地質剖面的基礎上,再應用曲面構造法(趨勢面法、DEM生成技術)來生成各個層面,進而來表達三維體。比如國外的三維地質分析軟體GEOCOM就是採取此種思路的一個典型。具體的解決步驟如下:
①收集、整理原始地質資料,並進行柱狀和綜合分層;
②建立地質空間多參數資料庫;
③根據以上資料,應用人工互動式的地質剖面生成軟體平台,加上專家的人工干預生成各種各樣的空間地質剖面;
④分別根據各已計算剖面的地層分布結果,加上專家的干預、分析參數的控制來生成各個地質曲面;
⑤建立地層空間曲面構架資料庫;
⑥應用地質三維展示平台,基於地層空間曲面構架資料庫、地質空間多參數資料庫,來進行地質三維展示,三維切割分析、方量計算等功能。
(2)直接點面法。直接點面法的基本思路是,直接將原始的散狀數據進行有效的分層,直接根據各個層面的標高,應用曲面構造法(趨勢面法、DEM生成技術)來生成各個層面。比如國外的三維地質分析軟體ROCKWARE就是採取此種思路的一個典型。其解決步驟基本同於剖面成面法,只是沒有下文第3)步,但是地層曲面生成技術相對前者來說要更難一些。
(3)拓撲分析法。拓撲分析法的基本思路就是,基於各個層面的離散點,通過分析這些點的空間拓撲關系,構造地質體。目前來說進行拓撲分析基本採用六面體、四面體模型,或者是Delaunay四面體模型等。其與剖面成面法、直接點面法,在本質上沒有什麼區別,還是從離散的點出發去構造地質層面。
Ⅹ 如何進行三維gis 建模和可視化
這個我在行,看來到了Hightopo大展身手的時候!已經做出來的例子題主可以看下~~~
Web 3D GIS 智慧工廠
通過可視化和 GIS 相關技術,對鋼鐵廠的能源和安全進行全方位的數字化建設,使鋼鐵廠監控更加直觀和准確,提高鋼鐵廠的整體管理水平、煉鋼效率,進一步推動鋼鐵行業綠色化和智能化轉換升級進程。
HT for Web GIS產品讓 GIS 數據的可視化展示形式更加豐富,更加清晰直觀,讓即使不清楚具體業務的人也能一眼看懂數據意義。