『壹』 股票估價的股票估價的模型
股票估價的基本模型
計算公式為:
股票價值
估價
R——投資者要求的必要收益率
Dt——第t期的預計股利
n——預計股票的持有期數
零增長股票的估價模型
零成長股是指發行公司每年支付的每股股利額相等,也就是假設每年每股股利增長率為零。每股股利額表現為永續年金形式。零成長股估價模型為:
股票價值=D/Rs
例:某公司股票預計每年每股股利為1.8元,市場利率為10%,則該公司股票內在價值為:
股票價值=1.8/10%=18元
若購入價格為16元,因此在不考慮風險的前提下,投資該股票是可行的
二、不變增長模型
(1)一般形式。如果我們假設股利永遠按不變的增長率增長,那 么就會建立不變增長模型。 [例]假如去年某公司支付每股股利為 1.80 元,預計在未來日子 里該公司股票的股利按每年 5%的速率增長。因此,預期下一年股利 為 1.80×(1 十 0.05)=1.89 元。假定必要收益率是 11%,該公司的 股票等於 1. 80×[(1 十 0. 05)/(0.11—0. 05)]=1. 89/(0. 11—0. 05) =31.50 元。而當今每股股票價格是 40 元,因此,股票被高估 8.50 元,建議當前持有該股票的投資者出售該股票。
(2)與零增長模型的關系。零增長模型實際上是不變增長模型的 一個特例。特別是,假定增長率合等於零,股利將永遠按固定數量支 付,這時,不變增長模型就是零增長模型。 從這兩種模型來看, 雖然不變增長的假設比零增長的假設有較小 的應用限制,但在許多情況下仍然被認為是不現實的。但是,不變增 長模型卻是多元增長模型的基礎,因此這種模型極為重要。
三、多元增長模型 多元增長模型是最普遍被用來確定普通股票內在價值的貼現現 金流模型。這一模型假設股利的變動在一段時間內並沒有特定的 模式可以預測,在此段時間以後,股利按不變增長模型進行變動。因 此,股利流可以分為兩個部分。 第一部分 包括在股利無規則變化時期的所有預期股利的現值 第二部分 包括從時點 T 來看的股利不變增長率變動時期的所有預期股利的現 值。因此,該種股票在時間點的價值(VT)可通過不變增長模型的方程 求出
[例]假定 A 公司上年支付的每股股利為 0.75 元,下一年預期支 付的每股票利為 2 元,因而再下一年預期支付的每股股利為 3 元,即 從 T=2 時, 預期在未來無限時期, 股利按每年 10%的速度增長, 即 0:,Dz(1 十 0.10)=3×1.1=3.3 元。假定該公司的必要收益 率為 15%,可按下面式子分別計算 V7—和認 t。該價格與目前每股 股票價格 55 元相比較,似乎股票的定價相當公平,即該股票沒有被 錯誤定價。
(2)內部收益率。零增長模型和不變增長模型都有一個簡單的關 於內部收益率的公式,而對於多元增長模型而言,不可能得到如此簡 捷的表達式。雖然我們不能得到一個簡捷的內部收益率的表達式,但 是仍可以運用試錯方法,計算出多元增長模型的內部收益率。即在建 立方程之後,代入一個假定的伊後,如果方程右邊的值大於 P,說明 假定的 P 太大;相反,如果代入一個選定的盡值,方程右邊的值小於 認說明選定的 P 太小。繼續試選盡,最終能程式等式成立的盡。 按照這種試錯方法,我們可以得出 A 公司股票的內部收益率是 14.9%。把給定的必要收益 15%和該近似的內部收益率 14.9%相 比較,可知,該公司股票的定價相當公平。
(3)兩元模型和三元模型。有時投資者會使用二元模型和三元模 型。二元模型假定在時間了以前存在一個公的不變增長速度,在時間 7、以後,假定有另一個不變增長速度城。三元模型假定在工時間前, 不變增長速度為身 I,在 71 和 72 時間之間,不變增長速度為期,在 72 時間以後,不變增長速度為期。設 VTl 表示 在最後一個增長速度開始後的所有股利的現值,認-表示這以前 所有股利的現值,可知這些模型實際上是多元增長模型的特例。
四、市盈率估價方法 市盈率,又稱價格收益比率,它是每股價格與每股收益之間的比 率,其計算公式為反之,每股價格=市盈率×每股收益 如果我們能分別估計出股票的市盈率和每股收益, 那麼我們就能 間接地由此公式估計出股票價格。這種評價股票價格的方法,就是 「市盈率估價方法」
五、貼現現金流模型 貼現現金流模型是運用收入的資本化定價方法來決定普通股票 的內在價值的。按照收入的資本化定價方法,任何資產的內在價值是 由擁有這種資產的投資 者在未來時期中所接受的現金流決定的。 由於現金流是未來時期的預 期值,因此必須按照一定的貼現率返還成現值,也就是說,一種資產 的內在價值等於預期現金流的貼現值。對於股票來說,這種預期的現 金流即在未來時期預期支付的股利,因此,貼現現金流模型的公式為 式中:Dt 為在時間 T 內與某一特定普通股相聯系的預期的現金 流,即在未來時期以現金形式表示的每股股票的股利;K 為在一定風 險程度下現金流的合適的貼現率; V 為股票的內在價值。 在這個方程里,假定在所有時期內,貼現率都是一樣的。由該方 程我們可以引出凈現值這個概念。凈現值等於內在價值與成本之差, 即 式中:P 為在 t=0 時購買股票的成本。 如果 NPV>0,意味著所有預期的現金流入的凈現值之和大於投 資成本,即這種股票被低估價格,因此購買這種股票可行; 如果 NPV<0,意味著所有預期的現金流入的凈現值之和小於投 資成本,即這種股票被高估價格,因此不可購買這種股票。 在了解了凈現值之後,我們便可引出內部收益率這個概念。內部 收益率就是使投資凈現值等於零的貼現率。如果用 K*代表內部收益 率,通過方程可得 由方程可以解出內部收益率 K*。把 K*與具有同等風險水平的股 票的必要收益率(用 K 表示)相比較:如果 K*>K,則可以購買這種股 票;如果 K*<K,則不要購買這種股票。 一股普通股票的內在價值時存在著一個麻煩問題, 即投資者必須 預測所有未來時期支付的股利。 由於普通股票沒有一個固守的生命周 期,因此建議使用無限時期的股利流,這就需要加上一些假定。 這些假定始終圍繞著勝利增長率,一般來說,在時點 T,每股股 利被看成是在時刻 T—1 時的每股股利乘上勝利增長率 GT,其計 例如,如果預期在 T=3 時每股股利是 4 美元,在 T=4 時每股股利 是 4.2 美元,那麼不同類型的貼現現金流模型反映了不同的股利增 長率的假定
『貳』 股利固定增長的股票估價模型
可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。
第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。
第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。
『叄』 股票的預測模型有哪些
Miller and Modigliani(1961)四個定價模式
1.凈現金流量折現法
2.投資機會折現法
3.股利折現法
4.盈餘折現法
市場實務(回本益比、市價答凈值比等)倍數還原法
自由現金流量法(Free Cash Flow Method)
市場效率假說
CAPM模型與APT模型等
你是指上述之評價模式嗎
『肆』 股票估價中的H模型是如何推導的
Value = D0(1 + gt)/(r – gt) + D0*H(gs – gt)/(r – gt)
這個應該是你提到的H模型吧?它假設一個公司的高增長率gs,通過一段時間例如10年,內慢慢降低到其長期容增長率gt,H為一半的下降時間,如例為5(H=10/2).如需詳盡資料,建議到書店或圖書館查詢。
『伍』 股票估價模型問題
2010年末每股價值 1.2(1+0.15)/1.18+1.2(1+0.15)(1+0.15)/1.18^2+1.2*1.15*1.15*1.15/1.18^3+1.2*1.15*1.15*1.15*1.1/(0.18-0.1)/1.18^3=18.69
預期收益率用財務計算器才版能算出,方法權同上
『陸』 股票估價的基本模型是怎樣的
模型是騙人的,不用用理論來炒股. 學者,專家,教授在炒股都是傻瓜. 股市里人人平等版. 股票價值是多空權力量斗爭的結果, 看不懂K線圖,沒有時間看大盤和個股走勢的朋友, 請您一定不要炒股. 同時,推薦股票的,理財的機構和個人都是騙子. 沒有經驗的人,沒有時間炒股的,不會分析的人,沒有股市3年經驗的人,炒股,都是傻瓜和笨蛋. 中國股市喜歡暴漲暴跌, 把人都弄成了神經病和瘋子了.\ 新比利金融(BLE INDEX)既可買漲也可買跌,一萬可以當一百萬使用的股票T+0平台。
『柒』 股票估值的方法模型有哪幾種
總得來說分為相對估值法和絕對估值法
相對估值法的模型有市盈率和市凈率
絕對估值法版的模型有公司現權金流貼現模型和股利貼現模型
我前幾天做過一個關於估值模型的PPT,LZ感興趣的話,可以留個郵箱,我傳給你O(∩_∩)O~
『捌』 對於股票價格,目前有哪些估價模型
市盈率模型:建立在靜態盈利能力基礎上的估值工具,使用最廣但是也最沒用!
市凈率模型:建立在凈資產數額基礎上的估值工具,比較有用,但是要看企業的凈資產究竟由什麼構成,是否足額計提了減值准備等問題。凈資產質量的判斷很重要。這個模型有點過時了,不過很直觀。我一直用這個模型。
市銷率模型:建立在銷售額基礎上的模型,銷售額有效的避免了企業個別年份業績暴增所帶來的假象,並可以發現並不是明顯被低估的股票。這個模型由費雪提出,很好很強大!本人是這個模型的忠實擁埠!
不變增長模型:建立在企業業績增長率不變的基礎上的估值模型,股票價格是企業未來的現金流的貼現。這個模型很簡單,也比較好。但是別當真啊!
『玖』 計算股票價值的模型有哪些
計算股票價值的模型有:
1、DDM模型(Dividend discount model /股利折現模型)
回2、DCF /Discount Cash Flow /折現現金流模型)
3、FCFE ( Free cash flow for the equity equity /股權自由答現金流模型)模型
4、FCFF模型( Free cash flow for the firm firm /公司自由現金流模型)。
股票模型:
股票模型就是對於現實中的個股,為了達到盈利目的,作出一些必要的簡化和假設,運用適當的數學分析,得到一個數學結構。
在這里引用數學模型的定義,也可以說,股票建模是利用數學語言(符號、式子與圖象)模擬現實的模型。把現實模型抽象、簡化為某種數學結構是數學模型的基本特徵。它或者能解釋特定現象的現實狀態,或者能預測到對象的未來狀況,或者能提供處理對象的最優決策或控制。
『拾』 求:利用股票估價模型,計算A、B公司股票價值
股票估價與債券估價具有不同的特點。
債券有確定的未來收入現金流。這些現金流包括: 票
息收入和本金收入。無論票息收入還是本金都有確定發生
的時間和大小。因此債券的估價可以完全遵循折現現金流
法。
一般來講, 股票收入也包括兩部分: 股利收入和出售
時的售價。因此, 理論上股票估價也可以採用折現現金流
法, 即求一系列的股利和將來出售股票時售價的現值。
但是, 股利和將來出售股票時的售價都是不確定的,
也是很難估計的。因此, 股票估價很難用折現現金流法來
完成。事實上, 目前理論上還沒有一個准確估計股票價值
的模型問世。
不過, 在對股利做出一些假設的前提下, 我們仍然可
以遵循折現現金流法的思想去嘗試股票價值的估計。
本文在MATLAB 編程環境中建立了股票估價的兩階段和三階段模型, 並用具體的實例驗證了模型的正
確性和廣泛適應性; 最後, 使用兩階段模型進行了股票價值對初始股利、所要求的最低回報率、高速增長期以及股利
增長率的敏感性分析, 得出了股票價值對最低回報率和股利增長率最為敏感的結論。這些分析對投資決策具有一定
的參考價值。
具體模型參考:www.xxpie.cn