A. 什么是现货期货平价理论
期货的价格是某种商品价格的未来预期
譬如豆油1009 就是 豆油 2010年9月15号交割时的价格预期(因为时通专常在提前不属到一年的时间里炒作)
期货的价格 因为是提前炒作的 所以会受到 当时现货价格的 影响 和投资人 心理预期的影响
通常情况下 期货价格是在现货价格 的±20%之间波动
当然期货价格反过来也会影响现货的价格
现在随着中国期货市场的完善 期货价格对现货价格的指导意义 也越来越大
B. 如何证明无收益资产的现货
现货和期货 之间的价格还是很难讲明白的, 理论上期货的价格应该比现货的价格高一点,版由于期货权还要加一个仓储费,交割等方面的费用;\r\n不过由于期货的价格是投资者对现货未来的价格的,如果市场预计将来现货需求转弱或者供应加大,这时候期货价格就有可能比现货价格低;\r\n反过来说市场预计未来现货需求增加或者供应减少的话 期货价格会高于现货价格\r\n\r\n还有期货价格也分近月合约 和远月合约的现货 现货价格坚挺,市场就有可能体现出近强远弱,所以现货和期货价格的关系很难用言语能说的明白,只能靠增加慢慢摸索,增加这方面的经验。
C. 考虑同一种股票的期货合约,看涨期权和看跌期权交易,若X=T,如何证明看涨期权价格等于看跌期权价格呢
看涨期权与看跌期权之间的平价关系
(一)欧式看涨期权与看跌期权之间的平价关系
1.无收益资产的欧式期权
在标的资产没有收益的情况下,为了推导c和p之间的关系,我们考虑如下两个组合:
组合A:一份欧式看涨期权加上金额为Xe-r(T-t) 的现金
组合B:一份有效期和协议价格与看涨期权相同的欧式看跌期权加上一单位标的资产
在期权到期时,两个组合的价值均为max(ST,X)。由于欧式期权不能提前执行,因此两组合在时刻t必须具有相等的价值,即:
c+Xe-r(T-t)=p+S(1.1)
这就是无收益资产欧式看涨期权与看跌期权之间的平价关系(Parity)。它表明欧式看涨期权的价值可根据相同协议价格和到期日的欧式看跌期权的价值推导出来,反之亦然。
如果式(1.1)不成立,则存在无风险套利机会。套利活动将最终促使式(1.1)成立。
2.有收益资产欧式期权
在标的资产有收益的情况下,我们只要把前面的组合A中的现金改为D+Xe-r(T-t) ,我们就可推导有收益资产欧式看涨期权和看跌期权的平价关系:
c+D+Xe-r(T-t)=p+S(1.2)
(二)美式看涨期权和看跌期权之间的关系
1.无收益资产美式期权。
由于P>p,从式(1.1)中我们可得:
P>c+Xe-r(T-t)-S
对于无收益资产看涨期权来说,由于c=C,因此:
P>C+Xe-r(T-t)-S
C-P<S-Xe-r(T-t)(1.3)
为了推导出C和P的更严密的关系,我们考虑以下两个组合:
组合A:一份欧式看涨期权加上金额为X的现金
组合B:一份美式看跌期权加上一单位标的资产
如果美式期权没有提前执行,则在T时刻组合B的价值为max(ST,X),而此时组合A的价值为max(ST,X)+ Xe-r(T-t)-X 。因此组合A的价值大于组合B。
如果美式期权在T-t 时刻提前执行,则在T-t 时刻,组合B的价值为X,而此时组合A的价值大于等于Xe-r(T-t) 。因此组合A的价值也大于组合B。
这就是说,无论美式组合是否提前执行,组合A的价值都高于组合B,因此在t时刻,组合A的价值也应高于组合B,即:
c+X>P+S
由于c=C,因此,
C+X>P+S
结合式(1.3),我们可得:
S-X<C-P<S-Xe-r(T-t)(1.4)
由于美式期权可能提前执行,因此我们得不到美式看涨期权和看跌期权的精确平价关系,但我们可以得出结论:无收益美式期权必须符合式(1.4)的不等式。
2.有收益资产美式期权
同样,我们只要把组合A的现金改为D+X,就可得到有收益资产美式期权必须遵守的不等式:
S-D-X<C-P<S-D-Xe-r(T-t) (1.5)