❶ 数据分析师的工资一般多少
很多人看到了数据分析行业的火爆以及好的待遇,但是不知道数据分析师的具体薪资是多少。对于这个问题我们需要分析三个方面,第一就是数据分析师的薪资分布式怎样的;第二是不同城市的薪资水平如何;第三个方面就是数据分析师的薪资随着学历和经验是怎么变化的。带着这三个问题,我们一同从下文中找到答案。
一般来说,数据分析师的薪资在8k-30k区间内,可以看出,这是一个较大的区间范围。尤其是15k-17.5k这个区间出现了突低的情况,这是由于在15k-17.5k这个区间前后的区间在10k-20k这样范围较广的区间,这个区间的平均工资就是12k左右。但是数据分析师很少有拿到30k以上的高薪,大部分都是在8k-20k范围内的。
下面来说数据分析师薪资的第二个方面,就是不同城市薪资之间的分布如何。经过调查发现,在需求较大的几个城市诸如北京、上海、深圳、杭州等地中,北京的整体薪资水平处于较高位置,其中位数大约在20k——处于全国的首位;其次为上海和杭州。对于深圳出现的均值较高且中位数较低的情况。由此可以发 现数据分析师的薪资总体水平还是挺高的,广泛的分布在9k和20k之内。
最后说说数据分析师薪资的第三个方面,就是数据分析师薪资随学历、经验是如何变化的。在现在的阶段并没有发现数据分析行业对博士学历的需求,大部分都是要求本科及以上,由此可见,本科学历是入行的基本条件。大专也是可以接受的,但是在能力相差不大的情况下还是会选择学历高的,硕士及以上学历对于求职者来说具有较高的竞争力。数据分析师对于工作经验的要求就是对1到3年和3到5年的要求是比较多的,而5到10年的数据分析师是比较少的。数据分析师可以说是一个公司的财富,一般来说,数据分析师的学历和经验越高,薪资也就是在20k到30k之间。
通过上面提到的内容想必大家已经知道了数据分析师的薪资水平了吧?数据分析师的薪资水平主要是由地域、学历、经验来决定的,从上文中我们不难发现数据分析师的工资是很客观的,大家如果想走进数据分析行业,一定要多多的用功学习啊。
❷ 数据分析岗位一般薪资是多少
数据分析也分高中低
低端的用excel,工作和办公室文员差不多,玩表格,做做一般统计,薪水不会太高
中端就是用工具了,出一些图标,做一点小开发,能做的事有限,工资8K起
高端就是根据应用来定制分析方案,甚至做数据挖掘,算法,工资15k起
❸ 数据分析师考试费用是多少
数据分析师是考试费用为全国统一收费8800一个人,分别包含了教材资料费用,远程学习,面授课和datahoop软件费用,还有认证考试的费用。
❹ 做大数据分析师能挣多少钱
二、大数据分析师的薪水在世界各地是否一致?
如您所料,大数据分析师角色的薪水因地点而异。数据科学中心确定以下十一个国家是大数据分析师薪酬最高的国家 ; 美国,瑞士,瑞典,新加坡,丹麦,加拿大,澳大利亚,荷兰,德国,中国和英国。毫不奇怪,该列表与经济发达国家的当前中位收入排名紧密相关。我们还可以查看与国家的平均薪资相比,以及与Web开发或UX设计等技术领域中其他流行的高薪专业相比,大数据分析师的薪水如何累积。让我们更深入地看一下欧洲和北美的两个最大市场。德国和美国。
德国的大数据分析师每年的收入在32,000欧元至60,000欧元之间,具体取决于企业的资历水平,行业,所在地和成熟度。德国大数据分析师的中位收入略低于4万4千欧元,比德国3万欧元以上的中位收入高出30%以上。它还可以很好地衡量其他技术工作;例如,它高于网络开发人员的平均工资,即41k欧元。在美国,大数据分析师的收入要比德国同行高得多。平均薪资为$ 60k(约€53k),比$ 43k的平均收入高出20%以上,与网络开发人员的预期收入相同一般。纽约的薪水在50,000至96,000美元之间,而旧金山的平均薪水在65,000至120,000美元之间。在整个池塘中,伦敦的大数据分析师职位的薪水在24,000英镑至47,000英镑之间,中国大数据分析师的薪水在5万左右。
大数据分析师的薪水范围。
四、大数据分析师根据他们的行业而获得不同的薪水吗?
成为大数据分析师的美妙之处在于,几乎所有行业都可以找到这样的角色。大多数企业都根据自己的数据制定决策,因此他们需要一名大数据分析师才能做到这一点。
LinkedIn将采矿业列为大数据分析师薪酬最高的行业,在美国,这些职位的平均薪酬为106,000美元至117,000美元。科学和公用事业部门的薪水也高于平均水平,平均薪金范围为74,000美元至80,000美元。在薪资范围的低端,从事制造业和金融业的大数据分析人员的薪水预计在55,000美元至65,000美元之间。
五、顶尖高科技公司向大数据分析师支付的工资
由于提供的高薪水,经常寻求在世界顶级科技公司担任大数据分析师的角色。苹果和Facebook 向其大数据分析师支付的薪水远高于平均水平。除了薪水美丽,设备齐全的办公室外,如果需要高超的学习经验,从事技术工作也将是不可思议的。员工可以体验快速变化,同时获得对塑造我们世界的技术的见识。
鉴于科技公司每天都会收集大量数据,因此大数据分析师在科技行业中扮演着重要角色也就不足为奇了。做大数据分析师能挣多少钱亚马逊的工作大数据分析人员可以在美国得到报酬高达$ 106,000名,与Facebook提供类似数额,根据的确。在伦敦,亚马逊的大数据分析师薪水高达38,000英镑。在伦敦为Google工作的大数据分析师可以期望得到更高的薪水,工资在42,000英镑到52,000英镑之间。对于那些在网络、腾讯、阿里北京办公室工作的人来说,薪水可能高达95,000美元。
❺ 数据分析师的薪资大约有多少
很多人看到了数据分析行业的火爆以及好的待遇,但是不知道数据分析师的具体薪资是多少。对于这个问题我们需要分析三个方面,第一就是数据分析师的薪资分布式怎样的;第二是不同城市的薪资水平如何;第三个方面就是数据分析师的薪资随着学历和经验是怎么变化的。带着这三个问题,我们一同从下文中找到答案。
一般来说,数据分析师的薪资在8k-30k区间内,可以看出,这是一个较大的区间范围。尤其是15k-17.5k这个区间出现了突低的情况,这是由于在15k-17.5k这个区间前后的区间在10k-20k这样范围较广的区间,这个区间的平均工资就是12k左右。但是数据分析师很少有拿到30k以上的高薪,大部分都是在8k-20k范围内的。
下面来说数据分析师薪资的第二个方面,就是不同城市薪资之间的分布如何。经过调查发现,在需求较大的几个城市诸如北京、上海、深圳、杭州等地中,北京的整体薪资水平处于较高位置,其中位数大约在20k——处于全国的首位;其次为上海和杭州。对于深圳出现的均值较高且中位数较低的情况。由此可以发 现数据分析师的薪资总体水平还是挺高的,广泛的分布在9k和20k之内。
最后说说数据分析师薪资的第三个方面,就是数据分析师薪资随学历、经验是如何变化的。在现在的阶段并没有发现数据分析行业对博士学历的需求,大部分都是要求本科及以上,由此可见,本科学历是入行的基本条件。大专也是可以接受的,但是在能力相差不大的情况下还是会选择学历高的,硕士及以上学历对于求职者来说具有较高的竞争力。数据分析师对于工作经验的要求就是对1到3年和3到5年的要求是比较多的,而5到10年的数据分析师是比较少的。数据分析师可以说是一个公司的财富,一般来说,数据分析师的学历和经验越高,薪资也就是在20k到30k之间。
通过上面提到的内容想必大家已经知道了数据分析师的薪资水平了吧?数据分析师的薪资水平主要是由地域、学历、经验来决定的,从上文中我们不难发现数据分析师的工资是很客观的,大家如果想走进数据分析行业,一定要多多的用功学习啊。
❻ 数据分析师挣多少钱
数据分析师是一种高技术类岗位,工资一般都是按照年薪计算,当然初级数据分析师除外。
在一二线城市的大型公司,高级数据分析师的工资可以达到上百万。
❼ 代做数据分析需要多少钱500块够么
得看数据量多大吧。。。还有就是需要什么要求,价格不能一口定吧
❽ 数据分析师工资多少
从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。北京、上海和深圳的薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。
从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。
从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。
不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。
❾ 数据分析师工资收入多少
从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。北京、内上海和深圳的容薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。
从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。
从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。
不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。