導航:首頁 > 金融投資 > 2014互聯網金融數據

2014互聯網金融數據

發布時間:2021-06-15 18:12:40

A. 數據顯示,2014年中國互聯網金融產品的網民滲透率達61.3% 什麼是互聯網金融

互聯網金融(ITFIN)是指傳統金融機構與互聯網企業利用互聯網技術和信息通信技術實版現資金融通、權支付、投資和信息中介服務的新型金融業務模式。[1] 互聯網金融ITFIN不是互聯網和金融業的簡單結合,而是在實現安全、移動等網路技術水平上,被用戶熟悉接受後(尤其是對電子商務的接受),自然而然為適應新的需求而產生的新模式及新業務。是傳統金融行業與互聯網技術相結合的新興領域。2016年10月13日,國務院辦公廳發布《互聯網金融風險專項整治工作實施方案的通知》。

B. 互聯網金融運營需要關注的數據有哪些

由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域 的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。

互聯網金融公司的金融屬性,從經營風險的角度來看,風險貫穿互聯網金融公司的企業日常運營、IT平台運營等過程,這與普通互聯網公司的運營主要關注產品運 營有極大不同,因此以下所指的運營並不單純指普通互聯網公司的運營部門的運營,而是從整個互聯網公司企業運營角度來說的。

根據互聯網共性可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等

運營不要只關注那些數據,數據是外在的,是基礎,而產品和平台核心競爭力才是發展的王道,數據+產品,找到平台最優的發展平衡點,才是運營下的這盤棋的目的。

C. 在哪兒可以找到互聯網金融的行業數據

前瞻產業研究院 提供的《2015-2020年中國互聯網金融行業市場前瞻與投資戰略規劃分析報專告》顯示,截止至屬2014年底,我國互聯網金融市場規模已經突破10萬億元。以P2P業態為例,過去5年中,各類P2P平台都獲得了年均超過250%的爆發式增長。

不過,作為新興行業,互聯網金融問題不容忽視。互聯網金融的安全風險也日益加劇。仍以P2P業態為例,數據顯示,2015年上半年我國問題P2P平台數量為273家,數量超過2014年問題P2P平台數總和,今年以來,P2P網路貸款平台出現跑路或提現困難的公司更是高達677家。

D. 如何進行互聯網金融運營數據的分析,都有哪些方法

來源於:知乎
大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?
我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。
一 、互聯網金融用戶四大行為特徵
互聯網金融平台用戶有四大行為特徵:
第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:
而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
可以看到,每隔一段時間,這個用戶就會有一段集中的、大量的交互行為。當用戶購買完成後,用戶的交互行為又變得很少,可能偶爾來看看產品的收益率,但整體的交互指標不會太高,直到他下一次購買。這個用戶理財需求的周期是一個月左右。

最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。
二、互聯網金融用戶運營的三大步驟
針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:
1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
這張圖是整體轉化漏斗,從不同維度可以做對比,比如我們先選出流量前 10 的渠道:
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。

E. 目前為止哪些學校開設有互聯網金融,大數據

目前抄國內高校開設互聯網金融專業襲的並不算多,因為該專業屬於新興的「互聯網+」前沿專業,是伴隨著金融行業互聯網化應運而生的。據我所知,對外經濟貿易大學、武漢大學國際軟體學院率先聯合慧科集團開設了這個專業,隨後河北軟體職業技術學院、山東女子學院等重視學生就業質量的高校也相繼開設了該專業。由於互聯網金融行業的快速發展,市場上對專業的互聯網金融人才的需求急劇增加。因此,可以預見未來會有越來越多的學校開設這個專業。

F. 互聯網金融數據在哪兒下載啊找的好睏難

金融數據有很多鍾,復一般的什麼制金融app都有免費的金融信息,最新的新聞資訊。比較好的有的要收錢的,比如有的額炒股軟體只有給錢或者 是會員才能看到最新最及時的詳細信息。

現在的信息比較發達,也有的交易中心有免費這樣的數據,網路東湖大數據就能找到

G. 什麼是互聯網金融數據抵押

H. 2014年上半年互聯網金融數據報告,誰有急需

不知道你要需要的是不是這個

一、廣義貨幣增長14.7%,狹義貨幣增長8.9%

6月末,廣義貨幣(M2)余額120.96萬億元,同比增長14.7%,增速分別比上月末和去年末高1.3個和1.1個百分點;狹義貨幣(M1)余額34.15萬億元,同比增長8.9%,增速比上月末高3.2個百分點,比去年末低0.4個百分點;流通中貨幣(M0)余額5.70萬億元,同比增長5.3%。上半年凈回籠現金1620億元。

二、上半年人民幣貸款增加5.74萬億元,外幣貸款增加757億美元

2014年7月 1 2 3 6月末,本外幣貸款余額82.88萬億元,同比增長13.7%。人民幣貸款余額77.63萬億元,同比增長14.0%,增速比上月末高0.1個百分點,比去年末低0.1個百分點。上半年人民幣貸款增加5.74萬億元,同比多增6590億元。分部門看,住戶貸款增加1.88萬億元,其中,短期貸款增加6601億元,中長期貸款增加1.22萬億元;非金融企業及其他部門貸款增加3.86萬億元,其中,短期貸款增加1.38萬億元,中長期貸款增加2.06萬億元,票據融資增加2432億元。6月份人民幣貸款增加1.08萬億元,同比多增2165億元。6月末外幣貸款余額8526億美元,同比增長9.9%,上半年外幣貸款增加757億美元。

三、上半年人民幣存款增加9.23萬億元,外幣存款增加1286億美元

6月末,本外幣存款余額117.26萬億元,同比增長13.1%。人民幣存款余額113.61萬億元,同比增長12.6%,增速比上月末高2.0個百分點,比去年末低1.2個百分點。上半年人民幣存款增加9.23萬億元,同比多增1354億元。其中,住戶存款增加4.05萬億元,非金融企業存款增加2.51萬億元,財政性存款增加6541億元。6月份人民幣存款增加3.79萬億元,同比多增2.19萬億元。6月末外幣存款余額5936億美元,同比增長34.5%,上半年外幣存款增加1286億美元。

四、6月份銀行間市場同業拆借月加權平均利率2.85%,質押式債券回購月加權平均利率2.89%

上半年,銀行間人民幣市場以拆借、現券和債券回購方式合計成交129.65萬億元,日均成交1.06萬億元,日均成交同比減少2.1%。

6月份,銀行間市場同業拆借月加權平均利率為2.85%,比上月高0.29個百分點;質押式債券回購月加權平均利率為2.89%,比上月高0.33個百分點。

五、國家外匯儲備余額3.99萬億美元

6月末,國家外匯儲備余額為3.99萬億美元。6月末,人民幣匯率為1美元兌6.1528元人民幣。

六、上半年跨境貿易人民幣結算業務發生3.27萬億元,直接投資人民幣結算業務發生4699億元

上半年,以人民幣進行結算的跨境貨物貿易、服務貿易及其他經常項目、對外直接投資、外商直接投資分別發生2.09萬億元、1.18萬億元、865億元、3834億元。

注1:當期數據為初步數。

注2:2011年10月份起,貨幣供應量已包括住房公積金中心存款和非存款類金融機構在存款類金融機構的存款。

希望對你有所幫助!

I. 求體現互聯網金融融資效率高以及發展快的相關數據,最好是2014-15年的!越多越好,寫論文用!謝謝

2014年全年P2P資金規模2582億,2015年2月達300億,2015年3月達492億

J. 互聯網金融 數據分析需要哪些數據

交易額,投資人數,用戶的屬性,平台的安全信息等等一系列的,你可以自己去相關的數據論壇去看看咯。

閱讀全文

與2014互聯網金融數據相關的資料

熱點內容
新茂嘉融資 瀏覽:316
融亨貴金屬交易平台 瀏覽:106
期貨跌停損失多少 瀏覽:260
國泰君安股票價格 瀏覽:32
中順潔柔資金流入 瀏覽:215
中資美元債個券價格 瀏覽:203
保險理財規劃師怎麼考 瀏覽:498
景津股票 瀏覽:228
彩超股票 瀏覽:854
股票怎麼看將軍柱 瀏覽:879
百合網股票代碼 瀏覽:432
人民幣匯率影響港幣嗎 瀏覽:1
有活期貸款利率是多少 瀏覽:786
白糖期貨價格波動分析 瀏覽:18
招行移動互聯網產業股票基金 瀏覽:417
95年古井貢酒價格 瀏覽:244
買車貸款好代嗎找誰 瀏覽:116
元正集團股票 瀏覽:882
雪峰科技股票吧 瀏覽:483
境外期貨軟體 瀏覽:793