A. 量化投資 工具及其編程語言 matlab,MT4及金仕達
這不是一回事。
matlab是數學軟體,它的功能主要是矩陣計算。
MT4是做外匯和黃金的交易平台,可以內寫自動容交易程序。
金仕達可以做國內期貨的自動交易。
第一個是用來開發量化策略的。後兩個是做量化投資實現的,或者說是做自動交易的。
B. 量化投資用什麼編程語言研發策略好呢
么以下我就以程序語言的角度來回答
當然如果已經會了某些語言,那你可以使用熟悉的語言去找版網上的學習資源權會比較快
如果沒有特別熟悉的語言,或者是願意多學一種非常好用的語言
我的建議是學習Python
我從以下幾點來分別說明
平台資源
國內外使用Python做雲端回測以及運算的免費平台相當的多,例如有 寬客在線,發明者量化,優礦, 等等不勝枚舉,可以使用平台的支持以及社區的互相幫助來學習
容易學習
綜合以上所說,"目前的環境底下" 我推薦Python.(推薦直接下載 Anaconda的集成開發環境)
C. 用Python怎麼做量化投資
本文將會講解量化投資過程中的基本流程,量化投資無非這幾個流程,數據輸入------策略書寫------回測輸出
其中策略書寫部分還涉及到編程語言的選擇,如果不想苦惱數據輸入和回測輸出的話,還要選擇回測平台。
一、數據
首先,必須是數據,數據是量化投資的基礎
如何得到數據?
Wind:數據來源的最全的還是Wind,但是要付費,學生可以有免費試用的機會,之後還會和大家分享一下怎樣才Wind里摘取數據,Wind有很多軟體的借口,Excel,Matlab,Python,C++。
預測者網:不經意間發現,一個免費提供股票數據網站 預測者網,下載的是CSV格式
TB交易開拓者:Tradeblazer,感謝@孫存浩提供數據源
TuShare:TuShare -財經數據介麵包,基於Python的財經數據包,利用Python進行摘取
如何存儲數據?
Mysql
如何預處理數據?
空值處理:利用DataFrame的fill.na()函數,將空值(Nan)替換成列的平均數、中位數或者眾數
數據標准化
數據如何分類?
行情數據
財務數據
宏觀數據
二、計算語言&軟體
已經有很多人在網上詢問過該選擇什麼語言?筆者一開始用的是matlab,但最終選擇了python
python:庫很多,只有你找不到的,沒有你想不到,和量化這塊結合比較緊密的有:
Numpy&Scipy:科學計算庫,矩陣計算
Pandas:金融數據分析神器,原AQR資本員工寫的一個庫,處理時間序列的標配
Matplotlib:畫圖庫
scikit-learn:機器學習庫
statsmodels:統計分析模塊
TuShare:免費、開源的python財經數據介麵包
Zipline:回測系統
TaLib:技術指標庫
matlab:主要是矩陣運算、科學運算這一塊很強大,主要有優點是WorkSpace變數可視化
python的Numpy+Scipy兩個庫完全可以替代Matlab的矩陣運算
Matplotlib完克Matlab的畫圖功能
python還有很多其他的功能
pycharm(python的一款IDE)有很棒的調試功能,能代替Matlab的WorkSpace變數可視化
推薦的python學習文檔和書籍
關於python的基礎,建議廖雪峰Python 2.7教程,適合於沒有程序基礎的人來先看,涉及到python的基本數據類型、循環語句、條件語句、函數、類與對象、文件讀寫等很重要的基礎知識。
涉及到數據運算的話,其實基礎教程沒什麼應用,python各類包都幫你寫好了,最好的學習資料還是它的官方文檔,文檔中的不僅有API,還會有寫實例教程
pandas文檔
statsmodels文檔
scipy和numpy文檔
matplotlib文檔
TuShare文檔
第二,推薦《利用Python進行數據分析》,pandas的開發初衷就是用來處理金融數據的
三、回測框架和網站
兩個開源的回測框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library
D. 量化交易程序開發是做什麼的
量化交易是利用計算機程序語言編寫程序來實現,分析行情走勢,分析公司專基本面,分屬析經濟數據,也可以實現自動化交易,舉個簡單例子,以前的價值投資者投資股票調研,你需要實地考察,現在很簡單,我投資某上市公司,想調用它的產品,我只需要檢測跟這產品有關的活躍論壇,群,幾大網路銷售平台的銷量評價,就能獲得一手調用數據了。量化交易比普通際交易者的優勢就在於,他的分析效率高,你問一個主觀交易者MACD指標在三千多隻股票里哪只收益最高,那隻收益最差,最優參數是多少,主觀交易者會告訴你指標不能信那東西都是主力騙人的。因為他不可能知道人工回測三千多隻股票的MACD指標一個金叉一個死叉的算還沒優化參數呢,人都得累死。但你問量化交易者他幾行代碼,計算機跑一會,三千多隻股票就回策完了。並告訴你歷史上那些參數是最優的哪些是最差的。
量化交易還有很多優勢,但量化交易本質上和主觀交易沒區別,只是效率大大提高,交易的策略還是以人的思維為主導地位的。目前機器學習還不能自己獨立交易,計算機都是按照人設計好的策略,來執行交易指令的。
E. 學習量化投資和程序化交易都要學習那方面的內容 謝謝了
計算機、數學、金融, 這三種知識 是必須的,其中計算機主要的是編程專技術,數學屬涵蓋的比較多,有統計、數學建模等,金融方面需要有最基礎的金融知識(證券交易方面)。 再者就是找一個好的量化平台了,以前的都是程序員,也是寬客,自己寫代碼,寫軟體編寫平台,接入交易所進行量化交易,但是這樣需要有比較高的編程技術。由於底層協議比較復雜,往往很費力費時。不過現在有了很多 客戶端的軟體,網路的平台比如 BotVS 量化平台,這些都把底層很好的封裝,有統一的操作介面,量化學習者只用把精力放在 量化策略、模型、數據分析上了。大概就是這樣。
F. 什麼是數量化投資和程序化交易
量化投資,簡單地說,就是利用數學、統計學、信息技術的量化投資方法來管理投資組合。數量化投資、程序化交易、演算法交易、自動化交易以及高頻交易都是數量化交易的特定方式, 其描述內容的側重點各有不同。數量化交易應用IT技術和金融工程模型偶那個幫助投資者指定投資策略、減少執行成本、進行套利和風險對沖。
數據、速度、風險管理是數量化交易系統建設中的關鍵問題。
期貨市場的數量化自動交易模型正逐步由投資者編制自用,演變為有一定規模的投資咨詢顧問組成的專業團隊參與。
程序化交易,也可稱之為系統交易或演算法交易,設計人員將市場常用之技術指標,利用電腦軟體將其寫入系統中,結合市場歷史數據,分析和組合各種指標建立數學模型,將交易策略系統化。當交易策略的條件滿足時,程序化系統自動發出多空訊號,並且有效掌握價格變化的趨勢,讓投資人不論在上漲或下跌的市場行情中,都能抓住交易策略,進而賺取波段獲利。程序化交易的操作方式不求賺取誇張利潤,只求長期穩健的獲利,於市場中成長並達到財富累積的復利效果。經過長時期操作,年獲利率可保持在一定水準之上。
程序化交易又是一種個性化交易,每個投資者(或機構)都可以根據自己的投資經驗和智慧,編寫自己的交易模型,進行電腦自動交易。交易模型是交易思想的凝練和實際化,正確的交易思想在嚴格的操作紀律實行下將獲得良好、穩定的投資收益,而通過交易模型正是將正確的交易思想與嚴格的操作紀律很好地結合在一起,幫助人們獲取良好、穩定的投資收益。程序化交易在投資實戰中不僅可以提高下單速度,更可以幫助投資者避免受到情緒波動的影響,消除交易時人性的恐懼、貪婪、遲疑及賭性等情緒,實現理性投資。
設計出色的程序化系統可以確保廣為流傳的交易成功三項基本原則的順利實施:順應市場趨勢、控制虧損交易、做足盈利交易。
總而言之,模型策略的出色設計、資金的有效風險控制、行情交易軟體的穩定可靠、數據的及時流暢以及下單速度的快捷,組成了優秀的程序化交易系統,它是量化投資的一種具體實現途徑。
G. 零基礎想學金融投資,量化交易編程,該怎麼學有哪些方法
我想問你學習的方法以編程是通過設定來完成的
H. 什麼是量化投資——數量化投資與程序化交易
2010-11-02 14:49:32 作者: 來源:永安期貨 瀏覽次數:0 量化投資,簡單地說,就是利用數學、統計學、信息技術的量化投資方法來管理投資組合。數量化投資、程序化交易、演算法交易、自動化交易以及高頻交易都是數量化交易的特定方式, 其描述內容的側重點各有不同。數量化交易應用IT技術和金融工程模型偶那個幫助投資者指定投資策略、減少執行成本、進行套利和風險對沖。數據、速度、風險管理是數量化交易系統建設中的關鍵問題。期貨市場的數量化自動交易模型正逐步由投資者編制自用,演變為有一定規模的投資咨詢顧問組成的專業團隊參與。 程序化交易,也可稱之為系統交易或演算法交易,設計人員將市場常用之技術指標,利用電腦軟體將其寫入系統中,結合市場歷史數據,分析和組合各種指標建立數學模型,將交易策略系統化。當交易策略的條件滿足時,程序化系統自動發出多空訊號,並且有效掌握價格變化的趨勢,讓投資人不論在上漲或下跌的市場行情中,都能抓住交易策略,進而賺取波段獲利。程序化交易的操作方式不求賺取誇張利潤,只求長期穩健的獲利,於市場中成長並達到財富累積的復利效果。經過長時期操作,年獲利率可保持在一定水準之上。 程序化交易又是一種個性化交易,每個投資者(或機構)都可以根據自己的投資經驗和智慧,編寫自己的交易模型,進行電腦自動交易。交易模型是交易思想的凝練和實際化,正確的交易思想在嚴格的操作紀律實行下將獲得良好、穩定的投資收益,而通過交易模型正是將正確的交易思想與嚴格的操作紀律很好地結合在一起,幫助人們獲取良好、穩定的投資收益。程序化交易在投資實戰中不僅可以提高下單速度,更可以幫助投資者避免受到情緒波動的影響,消除交易時人性的恐懼、貪婪、遲疑及賭性等情緒,實現理性投資。設計出色的程序化系統可以確保廣為流傳的交易成功三項基本原則的順利實施:順應市場趨勢、控制虧損交易、做足盈利交易。總而言之,模型策略的出色設計、資金的有效風險控制、行情交易軟體的穩定可靠、數據的及時流暢以及下單速度的快捷,組成了優秀的程序化交易系統,它是量化投資的一種具體實現途徑。上傳:錢文
I. 量化投資模型如何開發的
量化的模型開發大致分為以下幾個環節:
①數據處理,看你用什麼工具,R還是內Matlab還是python,或者是c++,最容好是工具本身的格式,這樣速度會快的多,比如Rdata,或matlab的mat格式,或者python的npy格式,或者c++的二進制格式,還有就是你要用什麼數據,分鍾數據,切片數據,還是tick數據,根據你的需求不同進行處理。
②指標建立,這個工作可以看成問題的關鍵,如何建立指標,你的思想是什麼,都來源於此,舉個簡單的均線指標,matlab,就是ma=movavg(data,length)
③模型回測,據我理解就是一個大循環:
if time>9. && time<15 && close(i)>ma(i) && p!=1
buy
else
sell
if p==1 && 止損條件
平倉
等等
④計算收益
然後根據收益,夏普比率等,改條件,重復上面的工作。
總結:
開發模型的步驟一般是:數據處理、尋找因子、回測驗證、實盤模擬、風險歸因。
備註:
數據處理:去極值、標准化、中性化;數據預處理。
尋找因子:尋找Alpha、尋找收益波動比因子、另外優礦上提供了近400個因子因子可以自己驗證。
J. 做量化交易一般用什麼軟體
需要懂一些數學模型,比如統計分析、人工智慧演算法之類的,他的本質是利用數學專模型分析數據屬潛在的規律尋找交易機會,並利用計算機程序來搜尋交易時機以及完成自動化交易。並沒有現成的軟體可以做這個,因為它需要一個搭建一個專業的平台,這不是一個人可以完成的。
國內有一些軟體,比如大智慧提供數量分析,還有一些軟體提供股票、期貨的程序化交易。但是實際上這並不是真正意義上的量化交易。事實上,做一款純粹的適合個人投資者的量化投資軟體,難度是非常大的,因為量化策略並不想傳統的基本面、技術面那樣存在已有既定的必然規律。他需要跨越多學科,多領域去挖掘數據的規律,然後利用得出的規律進行交易。但是不同時間、空間的數據的潛在規律並不一致,所以對量化過程進行標准化是一件很難完成的事情。
如果是計算機或者數學專業的人士,可以考慮使用C、C++、SQL等語言,其他的可以使用MATLAB/SAS 等軟體。不管是哪一種軟體,要實現量化交易,肯定是需要一定的建模基礎和編程基礎的,其中最重要的東西是數學能力。