導航:首頁 > 基金投資 > 量化投資策略與技術電子版

量化投資策略與技術電子版

發布時間:2021-07-28 08:17:32

1. 量化投資—策略與技術的介紹

《量化投資—策略與技術 》是2012 年1月電子工業出版社出版的圖書,作者丁鵬。

2. 量化投資—策略與技術的本書特色

第一,實戰性。書中的案例絕大多數來自於實際的市場數據,只有很少一部分是純理論的分析。尤其是策略篇中的內容大部分來自於專業投資機構的研究報告,具有極強的實戰價值。
第二,基於中國市場。與量化投資最接近的書籍當屬「金融工程」,但金融工程中絕大多數的案例都來自於國外市場,很多策略在國內市場還不具備投資條件。本書中的案例基本上都是對國內市場(股票期貨等)中的實際交易數據的分析,特別適合國內的投資者。
第三,理論性。量化投資離不開最新的數學和計算機理論的支持,本書用了將近一半的篇幅來闡述與量化投資有關的基礎理論,並用了很多案例來說明這些理論的應用方法。避免了一般投資策略書籍重技術而忽視理論的缺點,從而使量化投資更加科學化。
本書主要內容
本書的內容分為:策略篇和理論篇。策略篇中闡述了各種量化投資的策略與方法,理論篇則詳細介紹了支持量化投資的各種數學工具。
策略篇一共介紹了8個方面的投資策略,分別是量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、期權套利、演算法交易及其他策略。
投資策略 概述
量化選股 量化投資最重要的策略,主要是研究如何利用各種方法選出最佳的股票組合,使得該股票組合的收益率盡可能高的同時,保持盡可能的穩定性。量化選股一章闡述了8種不同角度的策略,分別為多因子模型、風格輪動模型、行業輪動模型、資金流模型、動量反轉模型、一致預期模型、趨勢追蹤模型和籌碼選股模型
量化擇時 量化投資中最難的,也是收益率最高的一種策略,主要研究大盤及個股走勢,並進行相應的高拋低吸操作。如果能夠正確判斷大盤,則收益率會比單純的買入-持有策略收益要高很多。這一章主要闡述了8種擇時模型,分別是趨勢擇時、市場情緒擇時、有效資金模型、牛熊線模型、Hurst指數模型、SVM模型、SWARCH模型和異常指標擇時

3. 量化投資—策略與技術的作品目錄

《量化投資—策略與技術》
策略篇
第 1章 量化投資概念
1.1 什麼是量化投資 2
1.1.1 量化投資定義 2
1.1.2 量化投資理解誤區 3
1.2 量化投資與傳統投資比較 6
1.2.1 傳統投資策略的缺點 6
1.2.2 量化投資策略的優勢 7
1.2.3 量化投資與傳統投資策略的比較 8
1.3 量化投資歷史 10
1.3.1 量化投資理論發展 10
1.3.2 海外量化基金的發展 12
1.3.3 量化投資在中國 15
1.4 量化投資主要內容 16
1.5 量化投資主要方法 21
.第 2章 量化選股 25
2.1 多因子 26
2.1.1 基本概念 27
2.1.2 策略模型 27
2.1.3 實證案例:多因子選股模型 30
2.2 風格輪動 35
2.2.1 基本概念 35
2.2.2 盈利預期生命周期模型 38
2.2.3 策略模型 40
2.2.4 實證案例:中信標普風格 41
2.2.5 實證案例:大小盤風格 44
2.3 行業輪動 47
2.3.1 基本概念 47
2.3.2 m2行業輪動策略 50
2.3.3 市場情緒輪動策略 52
2.4 資金流 56
2.4.1 基本概念 56
2.4.2 策略模型 59
2.4.3 實證案例:資金流選股策略 60
2.5 動量反轉 63
2.5.1 基本概念 63
2.5.2 策略模型 67
2.5.3 實證案例:動量選股策略和反轉選股策略 70
2.6 一致預期 73
2.6.1 基本概念 74
2.6.2 策略模型 76
2.6.3 實證案例:一致預期模型案例 78
2.7 趨勢追蹤 84
2.7.1 基本概念 84
2.7.2 策略模型 86
2.7.3 實證案例:趨勢追蹤選股模型 92
2.8 籌碼選股 94
2.8.1 基本概念 95
2.8.2 策略模型 97
2.8.3 實證案例:籌碼選股模型 99
2.9 業績評價 104
2.9.1 收益率指標 104
2.9.2 風險度指標 105
第 3章 量化擇時 111
3.1 趨勢追蹤 112
3.1.1 基本概念 112
3.1.2 傳統趨勢指標 113
3.1.3 自適應均線 121
3.2 市場情緒 125
3.2.1 基本概念 126
3.2.2 情緒指數 128
3.2.3 實證案例:情緒指標擇時策略 129
3.3 有效資金 133
3.3.1 基本概念 133
3.3.2 策略模型 134
3.3.3 實證案例:有效資金擇時模型 137
3.4 牛熊線 141
3.4.1 基本概念 141
3.4.2 策略模型 143
3.4.3 實證案例:牛熊線擇時模型 144
3.5 husrt指數 146
3.5.1 基本概念 146
3.5.2 策略模型 148
3.5.3 實證案例 149
3.6 支持向量機 152
3.6.1 基本概念 152
3.6.2 策略模型 153
3.6.3 實證案例:svm擇時模型 155
3.7 swarch模型 160
3.7.1 基本概念 160
3.7.2 策略模型 161
3.7.3 實證案例:swarch模型 164
3.8 異常指標 168
3.8.1 市場雜訊 168
3.8.2 行業集中度 170
3.8.3 興登堡凶兆 172
第 4章 股指期貨套利 180
4.1 基本概念 181
4.1.1 套利介紹 181
4.1.2 套利策略 183
4.2 期現套利 185
4.2.1 定價模型 185
4.2.2 現貨指數復制 186
4.2.3 正向套利案例 190
4.2.4 結算日套利 192
4.3 跨期套利 195
4.3.1 跨期套利原理 195
4.3.2 無套利區間 196
4.3.3 跨期套利觸發和終止 197
4.3.4 實證案例:跨期套利策略 199
4.3.5 主要套利機會 200
4.4 沖擊成本 203
4.4.1 主要指標 204
4.4.2 實證案例:沖擊成本 205
4.5 保證金管理 208
4.5.1 var方法 208
4.5.2 var計算方法 209
4.5.3 實證案例 211
第 5章 商品期貨套利 214
5.1 基本概念 215
5.1.1 套利的條件 216
5.1.2 套利基本模式 217
5.1.3 套利准備工作 219
5.1.4 常見套利組合 221
5.2 期現套利 225
5.2.1 基本原理 225
5.2.2 操作流程 226
5.2.3 增值稅風險 230
5.3 跨期套利 231
5.3.1 套利策略 231
5.3.2 實證案例:pvc跨期套利策略 233
5.4 跨市場套利 234
5.4.1 套利策略 234
5.4.2 實證案例:倫銅—滬銅跨市場套利 235
5.5 跨品種套利 236
5.5.1 套利策略 237
5.5.2 實證案例 238
5.6 非常狀態處理 240
第 6章 統計套利 242
6.1 基本概念 243
6.1.1 統計套利定義 243
6.1.2 配對交易 244
6.2 配對交易 247
6.2.1 協整策略 247
6.2.2 主成分策略 254
6.2.3 績效評估 256
6.2.4 實證案例:配對交易 258
6.3 股指套利 261
6.3.1 行業指數套利 261
6.3.2 國家指數套利 263
6.3.3 洲域指數套利 264
6.3.4 全球指數套利 266
6.4 融券套利 267
6.4.1 股票—融券套利 267
6.4.2 可轉債—融券套利 268
6.4.3 股指期貨—融券套利 269
6.4.4 封閉式基金—融券套利 271
6.5 外匯套利 272
6.5.1 利差套利 273
6.5.2 貨幣對套利 275
第 7章 期權套利 277
7.1 基本概念 278
7.1.1 期權介紹 278
7.1.2 期權交易 279
7.1.3 牛熊證 280
7.2 股票/期權套利 283
7.2.1 股票—股票期權套利 283
7.2.2 股票—指數期權套利 284
7.3 轉換套利 285
7.3.1 轉換套利 285
7.3.2 反向轉換套利 287
7.4 跨式套利 288
7.4.1 買入跨式套利 289
7.4.2 賣出跨式套利 291
7.5 寬跨式套利 293
7.5.1 買入寬跨式套利 293
7.5.2 賣出寬跨式套利 294
7.6 蝶式套利 296
7.6.1 買入蝶式套利 296
7.6.2 賣出蝶式套利 298
7.7 飛鷹式套利 299
7.7.1 買入飛鷹式套利 300
7.7.2 賣出飛鷹式套利 301
第 8章 演算法交易 304
8.1 基本概念 305
8.1.1 演算法交易定義 305
8.1.2 演算法交易分類 306
8.1.3 演算法交易設計 308
8.2 被動交易演算法 309
8.2.1 沖擊成本 310
8.2.2 等待風險 312
8.2.3 常用被動型交易策略 314
8.3 vwap演算法 316
8.3.1 標准vwap演算法 316
8.3.2 改進型vwap演算法 319
第 9章 其他策略 323
9.1 事件套利 324
9.1.1 並購套利策略 324
9.1.2 定向增發套利 325
9.1.3 套利重倉停牌股票的投資組合 326
9.1.4 封閉式投資組合套利 327
9.2 etf套利 328
9.2.1 基本概念 328
9.2.2 無風險套利 330
9.2.3 其他套利 334
9.3 lof套利 335
9.3.1 基本概念 335
9.3.2 模型策略 336
9.3.3 實證案例:lof 套利 337
9.4 高頻交易 341
9.4.1 流動性回扣交易 341
9.4.2 獵物演算法交易 342
9.4.3 自動做市商策略 343
9.4.4 程序化交易 343
理論篇
第 10章 人工智慧 346
10.1 主要內容 347
10.1.1 機器學習 347
10.1.2 自動推理 350
10.1.3 專家系統 353
10.1.4 模式識別 356
10.1.5 人工神經網路 358
10.1.6 遺傳演算法 362
10.2 人工智慧在量化投資中的應用 366
10.2.1 模式識別短線擇時 366
10.2.2 rbf神經網路股價預測 370
10.2.3 基於遺傳演算法的新股預測 375
第 11章 數據挖掘 381
11.1 基本概念 382
11.1.1 主要模型 382
11.1.2 典型方法 384
11.2 主要內容 385
11.2.1 分類與預測 385
11.2.2 關聯規則 391
11.2.3 聚類分析 397
11.3 數據挖掘在量化投資中的應用 400
11.3.1 基於som 網路的股票聚類分析方法 400
11.3.2 基於關聯規則的板塊輪動 403
第 12章 小波分析 407
12.1 基本概念 408
12.2 小波變換主要內容 409
12.2.1 連續小波變換 409
12.2.2 連續小波變換的離散化 410
12.2.3 多分辨分析與mallat演算法 411
12.3小波分析在量化投資中的應用 414
12.3.1 k線小波去噪 414
12.3.2 金融時序數據預測 420
第 13章 支持向量機 429
13.1 基本概念 430
13.1.1 線性svm 430
13.1.2 非線性svm 433
13.1.3 svm分類器參數選擇 435
13.1.4 svm分類器從二類到多類的推廣 436
13.2 模糊支持向量機 437
13.2.1 增加模糊後處理的svm 437
13.2.2 引入模糊因子的svm訓練演算法 439
13.3 svm在量化投資中的應用 440
13.3.1 復雜金融時序數據預測 440
13.3.2 趨勢拐點預測 445
第 14章 分形理論 452
14.1 基本概念 453
14.1.1 分形定義 453
14.1.2 幾種典型的分形 454
14.1.3 分形理論的應用 456
14.2 主要內容 457
14.2.1 分形維數 457
14.2.2 l系統 458
14.2.3 ifs系統 460
14.3 分形理論在量化投資中的應用 461
14.3.1 大趨勢預測 461
14.3.2 匯率預測 466
第 15章 隨機過程 473
15.1 基本概念 473
15.2 主要內容 476
15.2.1 隨機過程的分布函數 476
15.2.2 隨機過程的數字特徵 476
15.2.3 幾種常見的隨機過程 477
15.2.4 平穩隨機過程 479
15.3 灰色馬爾可夫鏈股市預測 480
第 16章 it技術 486
16.1 數據倉庫技術 486
16.1.1 從資料庫到數據倉庫 487
16.1.2 數據倉庫中的數據組織 489
16.1.3 數據倉庫的關鍵技術 491
16.2 編程語言 493
16.2.1 GPU演算法交易 493
16.2.2 MATLAB 語言 497
16.2.3 c#語言 504
第 17章 主要數據與工具 509
17.1 名策多因子分析系統 509
17.2 MultiCharts:程序化交易平台 511
17.3 交易開拓者:期貨自動交易平台 514
17.4 大連交易所套利指令 518
17.5 mt5:外匯自動交易平台 522
第 18章 量化對沖交易系統:D-alpha 528
18.1 系統構架 528
18.2 策略分析流程 530
18.3 核心演算法 532
18.4 驗證結果 534
表目錄
表1 1 不同投資策略對比 7
表2 1 多因子選股模型候選因子 30
表2 2 多因子模型候選因子初步檢驗 31
表2 3 多因子模型中通過檢驗的有效因子 32
表2 4 多因子模型中剔除冗餘後的因子 33
表2 5 多因子模型組合分段收益率 33
表2 6 晨星市場風格判別法 36
表2 7 夏普收益率基礎投資風格鑒別 37
表2 8 中信標普風格指數 41
表2 9 風格動量策略組合月均收益率 43
表2 10 大小盤風格輪動策略月收益率均值 46
表2 11 中國貨幣周期分段(2000—2009年) 49
表2 12 滬深300行業指數統計 50
表2 13 不同貨幣階段不同行業的收益率 51
表2 14 招商資金流模型(cmsmf)計算方法 58
表2 15 招商資金流模型(cmsmf)選股指標定義 59
表2 16 資金流模型策略——滬深300 61
表2 17 資金流模型策略——全市場 62
表2 18 動量組合相對基準的平均年化超額收益(部分) 68
表2 19 反轉組合相對基準的平均年化超額收益(部分) 69
表2 20 動量策略風險收益分析 71
表2 21 反轉策略風險收益分析 73
表2 22 趨勢追蹤技術收益率 93
表2 23 籌碼選股模型中單個指標的收益率情況對比 99
表3 1 ma指標擇時測試最好的20 組參數及其表現 117
表3 2 4個趨勢型指標最優參數下的獨立擇時交易表現比較 120
表3 3 有交易成本情況下不同信號個數下的綜合擇時策略 120
表3 4 自適應均線擇時策略收益率分析 124
表3 5 市場情緒類別 126
表3 6 滬深300指數在不同情緒區域的當月收益率比較 128
表3 7 滬深300指數在不同情緒變化區域的當月收益率比較 129
表3 8 滬深300指數在不同情緒區域的次月收益率比較 130
表3 9 滬深300指數在不同情緒變化區域的次月收益率比較 130
表3 10 情緒指數擇時收益率統計 132
表3 11 svm擇時模型的指標 156
表3 12 svm對滬深300指數預測結果指標匯總 156
表3 13 svm擇時模型在整體市場的表現 156
表3 14 svm擇時模型在單邊上漲市的表現 157
表3 15 svm擇時模型在單邊下跌市的表現 158
表3 16 svm擇時模型在震盪市的表現 159
表3 17 雜訊交易在熊市擇時的收益率 170
表4 1 各種方法在不同股票數量下的跟蹤誤差(年化) 190
表4-2 股指期貨多頭跨期套利過程分析 199
表4 3 不同開倉比例下的不同保證金水平能夠覆蓋的市場波動及其概率 211
表4 4 不同倉單持有期下的保證金覆蓋比例 212
表6 1 融券標的股票中在樣本期內最相關的50 對組合(部分) 248
表6 2 殘差的平穩性、自相關等檢驗 249
表6 3 在不同的閾值下建倉、平倉所能獲得的平均收益 251
表6 4 採用不同的模型在樣本內獲取的收益率及最優閾值 252
表6 5 採用不同的模型、不同的外推方法在樣本外獲取的收益率(%) 253
表6 6 主成分配對交易在樣本內取得的收益率及最優閾值 255
表6 7 主成分配對交易在樣本外的效果 255
表6-8 各種模型下統計套利的結果 256
表6 9 延後開倉+提前平倉策略實證結果 260
表6 10 各行業的配對交易結果 261
表7 1 多頭股票-期權套利綜合分析表 283
表7 2 多頭股票—股票期權套利案例損益分析表 284
表7 3 多頭股票-指數期權套利案例損益分析表 285
表7 4 轉換套利分析過程 286
表7 5 買入跨式套利綜合分析表 289
表7 6 買入跨式套利交易細節 289
表7 7 賣出跨式套利綜合分析表 291
表7 8 賣出跨式套利交易細節 292
表7 9 買入寬跨式套利綜合分析表 293
表7 10 賣出寬跨式套利綜合分析表 294
表7 11 買入蝶式套利綜合分析表 296
表7 12 賣出蝶式套利綜合分析表 298
表7 13 買入飛鷹套利分析表 300
表7 14 賣出飛鷹式套利綜合分析表 301
表9 1 主要並購方式 324
表9 2 並購套利流程 325
表9 3 鵬華300 lof兩次正向套利的情況 339
表9 4 鵬華300 lof兩次反向套利的情況 340
表10 1 自動推理中連詞系統 352
表10 2 模式識別短線擇時樣本數據分類 369
表10 3 rbf神經網路股價預測結果 375
表10 4 遺傳演算法新股預測參數設置 379
表10 5 遺傳演算法新股預測結果 380
表11 1 決策樹數據表 389
表11 2 關聯規則案例數據表 392
表11 3 som股票聚類分析結果 403
表11 4 21種股票板塊指數布爾關系表數據片斷 404
表12 1 深發展a日收盤價小波分析方法預測值與實際值比較 427
表12 2 不同分解層數的誤差均方根值 428
表13 1 svm滬深300指數預測誤差情況 445
表13 2 svm指數預測和神經網路預測的比較 445
表13 3 技術反轉點定義與圖型 448
表13 4 svm趨勢拐點預測結果 450
表14 1 持續大漲前後分形各主要參數值 463
表14 2 持續大跌前後分形個主要參數值 465
表14 3 外匯r/ s 分析的各項指標 469
表14 4 v(r/s)曲線回歸檢驗 470
表15 1 灰色馬爾可夫鏈預測深證成指樣本內(2005/1—2006/8) 484
表15 2 灰色馬爾可夫鏈預測深證成指樣本外(2006/9—2006/12) 484
表16-1 vba的12種數據類型 499
表18-1 d-alpha系統在全球市場收益率分析 534

4. 求量化投資-策略與技術的電子書(丁鵬著)

首席投資官丁鵬

5. 量化投資—策略與技術的內容簡介

《量化投資—策略與技術》是國內第一本有關量化投資策略的著作,首先介紹了量化投資大師西蒙斯的傳奇故事(連續20年,每年賺60%);然後用60多個案例介紹了量化投資的各個方面的內容,主要分為策略篇與理論篇兩部分,策略篇主要包括:量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、期權套利、演算法交易和資產配置等。理論篇主要包括:人工智慧、數據挖掘、小波分析、支持向量機、分形理論、隨機過程及it技術等;最後介紹了作者開發的d-alpha量化對沖交易系統,該系統全球市場驗證顯示具有長期穩健的收益率。
《量化投資—策略與技術》適合基金經理、證券分析師、普通散戶及有志於從事金融投資的各界人士閱讀。

6. 量化投資策略與技術修訂版有什麼不同

量化投資策略就是利用量化的方法,進行金融市場的分析、判斷和交易的策略、演算法的總版稱。
量化投權資策略類型包括:
(1) 趨勢判斷型量化投資策略,判斷趨勢型是一種高風險的投資方式,通過對大盤或者個股的趨勢判斷,進行相應的投資操作。如果判斷是趨勢向上則做多,如果判斷趨勢向下則做空,如果判斷趨勢盤整,則進行高拋低吸。這種方式的優點是收益率高,缺點是風險大。一旦判斷錯誤則可能遭受重大損失。所以趨勢型投資方法適合於風險承受度比較高的投資者,在承擔大風險的情況下,也會有機會獲得高額收益。
(2) 波動率判斷型量化投資策略,判斷波動率型投資方法,本質上是試圖消除系統性風險,賺取穩健的收益。這種方法的主要投資方式是套利,即對一個或者N個品種,進行買入同時並賣出另外一個或N個品種的操作,這也叫做對沖交易。這種方法無論在大盤哪個方向波動,向上也好,向下也好,都可以獲得一個比較穩定的收益。在牛市中,這種方法收益率不會超越基準,但是在熊市中,它可以避免大的損失,還能有一些不錯的收益。

7. 量化投資—策略與技術的作者簡介

丁 鵬
中國量化投資研究的先行者,他開發的D-Alpha量化對沖交易系統,實戰中獲得持續穩健的收益率。
畢業於上海交通大學計算機系獲得工學博士學位,是國際知名的人工智慧研究員,美國電子電氣工程師學會(IEEE)、美國金融學會(AFA)會員。
《CCTV證券資訊》特邀嘉賓
《網易財經》特邀嘉賓
《第一財經日報》特約撰稿人
2001年底進入上海交通大學工作,在金融工程、金融數學領域深入研究多年,在國際頂級刊物和會議上發表過十餘篇學術文章,獲得國家發明專利5項。
2008年進入東方證券股份有限公司工作,從事量化投資研究,包括量化選股、量化擇時等研究。

8. 喬治·索羅斯寫過一本叫《量化投資》的書嗎

一下內容純手打

證券分析方法主要分三種:
一是基本面分析,代表作《證券分析》《價值投資》,代表任務「巴菲特」;

二是技術面分析,代表做《趨勢技術分析》《道瓊斯理論》等,注重短期投資,索羅斯屬於短期投機類型,但是沒有任何資料顯示他的投資流派屬於純粹的技術面分析,可能的情況是上述兩種都有。今年的而貝爾經濟學得主法瑪提出的」有效市場假說「某一種程度上,否定了技術面分析。

三是量化分析,美國近幾十年興起的一種方法,典型的代表人物是西蒙斯。

中國國內的量化投資的研究還比較少,量化投資的基金以及機構也不夠普遍,切主要集中於香港地區。原因之一是,國內金融金融市場沒有完全開放,金融產品匱乏。美國市場的金融產品多達幾萬種,而國內只有兩百多種。

關於量化投資的書,國內國外都有很多,主要集中與國外,國內學者大多是對國外技術的學習。當然,如果你是初學者,建議你還是從國內的相關書籍開始學起。

如果有一本書,叫《量化投資》,我敢保證你看了一定學不到什麼東西,丁鵬的《量化投資》就是這樣,只是對現在主要方法以及模型的簡單介紹。用於同行業交流也許會有些價值。書籍內容從:量化選股、量化擇時、到套利什麼什麼的,基本上都是簡單的介紹,可以當作課外讀物,了解一下什麼叫量化投資。如果你真的想學到什麼東西,直接網路文庫:量化選股、多因子選股等詞,你會看到無數國內證券機構對市場的量化研究。而且資料詳細。可是,你學不到最根本的原理。

原因如下:
進行量化分析,必須至少具備兩種能力:

一、扎實且足夠的數學、統計學基礎,用於理論上的金融建模;
二、能夠使用相關計量軟體進行數據分析或者模型求解等。

這兩個要求一般人很難到達,所以證券從業的教材認為難度大是量化投資的一個很大局限性。

如果樓主對量化投資有興趣,我可以推薦一些教材給你:

如果僅僅是想了解一下: 丁鵬《量化投資》,書很貴,個人認為沒什麼實用價值。可以有個簡單的系統的認識;

如果是想學習並且能在實際中運用,建議如下:

數學方面:
《微積分》 到高級《高級微積分》
《線性代數》《非線性代數》
《概率論與數理統計》《概率、隨機變數、隨機過程》
《離散數學》《運籌學》《統計學》
金融理論上
《計量經濟學基礎》《計量經濟分析》
《數量金融學》《金融時間序列分析》
。。。。還有很多很多
以及其他金融知識基礎
建模方面
這類的書,我看的不多哦,你自己網路一下,或者找個圖書館看看
計算機軟體
C 和 C++ 至少學一個,SQL 建議學一點
建模軟體主要有:MATHEMATICA MATLAB SAS SAC R Eviews GAMS 等等等等,終於哪些海外基金用的是哪一種,或者是不是自己做的專用軟體,我就不知道了。
不過,上述的軟體,肯定是可以滿足個人的研究需求的。這個,你選幾種學一學還是可以的。

一個人,想要精通上述全部,應該是很難的,所以,註定了,量化分析的方法,單個的普通人很難完成。
量化投資起源與上世紀美國政府大幅度削減了對物理航天業經費自持,導致很多搞火箭的科學家、數學家下崗。於是他們流入金融行業(收入高),利用自己對數學、計算機的優勢,使用原先用於火箭的建模預測證券市場,發現有著顯著成效。當然,這些模型的前提是,現代金融理論的奠基,以及數量金融的發展。

因此,我個人對量化投資的理解是:金融界的火箭科學家,傳統的分析方法,只用看某一或某幾個指標,根據歷史經驗或者主觀的客觀的XXOO判斷證券的未來走勢,但是量化分析,首先建立合理的數學模型,然後藉助計算機運用某些XX的演算法,分析求解,難度相對於傳統的方法難很多。

如果你想比較淺顯的掌握,用於投資決策的參考
那量化分析,也沒有想想中的那麼高深,它本質上是一種金融的建模,本質上,常用的方法還是統計專業的那幾個 ,什麼 回歸分析,線性規劃 ,相關性,時間序列等等等。。。我看了丁鵬的書,大致上認為他是用了這些方法。所以你只用把應用數學學好就好了。
還有一些像遺傳演算法、神經網路這些他的書裡面也提到了,屬於現代演算法,這些方法比較小,難度大,但是我猜只有學術界會用這些方法,因為現代演算法在實際運用中還不夠成熟,預測經常不準確。

表述有些亂,不過大致也只能寫成這樣了。

最後:和量化分析相關的專業主要有三個:
金融專業:金融工程;
數學專業:統計、應用數學;
計算機專業
這些專業的就業方向是可以面向量化分析的

9. 量化投資學習推薦的書籍都有哪些

1.《打開量化投資的黑箱》
這本書算是對量化投資的科普性介紹,沒有復雜的公式版,很適合初權學者。
2.《解讀量化投資:西蒙斯用公式打敗市場的故事》
正如題目中說的那樣,這本書是故事性的書,主要是介紹西蒙斯的一些經歷和思維方式。
3.《量化投資策略:如何實現超額收益Alpha》
這本書對常見的各種策略及其量化指標做了系統性分析,但是翻譯得......不是很好,建議英語好的朋友閱讀英文版。
4.《金融計量學:從初級到高級建模技術》
這本書是一本偏計量的書,介紹了很多金融領域的建模方法,需要一定的數學功底,可以作為量化投資基礎知識學習書。

10. 個人投資者 怎麼入門量化投資有沒有好的書籍

投資沒有死條條框框可以參考的,這得根據個人實際情況。首先是自己的資金情況,還有就是你自己時間的安排,最後是你對市場行情的了解。所以再好的書籍也沒法給你百分之百的保證,只有做過的人才最能理解。

閱讀全文

與量化投資策略與技術電子版相關的資料

熱點內容
韓元128000是多少人民幣 瀏覽:58
借貸寶內部貸款一萬的額度 瀏覽:298
8元人民幣兌韓幣 瀏覽:621
個人外匯結算賬戶結匯 瀏覽:109
美元與黃金價格反向變動 瀏覽:177
菲律賓350比是人民幣多少 瀏覽:53
雲南工業投資控股集團招聘 瀏覽:343
在生鋁錠價格 瀏覽:63
駐馬店太平洋投資擔保有限公司 瀏覽:930
智薈理財 瀏覽:357
5年10年指數基金 瀏覽:733
能反映主流資金的指標公式 瀏覽:734
10年期國債期貨價格在哪看 瀏覽:912
混合股股票 瀏覽:589
眾生葯業定向增發價格 瀏覽:76
股票就像小三 瀏覽:144
外匯戰法排行 瀏覽:639
南京什麼寶理財 瀏覽:997
黃金的未來走勢 瀏覽:616
cpa融資租賃 瀏覽:744