导航:首页 > 股市分析 > 移动互联网大数据分析处理技术

移动互联网大数据分析处理技术

发布时间:2021-12-11 17:47:21

㈠ 如何进行大数据分析及处理

探码科技大数据分析及处理过程


聚云化雨的处理方式

㈡ 大数据处理有哪些关键技术

大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
1、大数据采集技术
大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。

因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。

2、大数据预处理技术

大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。

因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。

3、大数据存储及管理技术

大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

4、大数据处理

大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。

大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。

1、制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

2、金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

3、汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。

4、互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

5、电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

㈢ 针对物联网,移动互联,大数据等新一代信息技术,企业有哪些发展与应用需求

主要由以下三点作用:

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从逗业务驱动地 转变逗数据驱动地。

㈣ 人力资源管理中应用大数据分析及移动互联网技术有何思路和建议

要写论文还是什么啊、、
首先,要分开解读你这个问题。什么是人力资源管理,大数据分析和移动互联网对其他的行业有何影响,在人力资源管理中,我们又能借鉴什么。这是思路。
再说说建议。建议都是趋向于利,避于害。那么我们就要注意大数据分析的几个重要性,量大、真实、速度快等,我们怎么可以做到这几点呢,多平台、多方向、真实认证等等手段去做。移动互联也可以同思路去写,安排好逻辑就行了。
个人见解,希望能帮到你。

㈤ 移动互联网如何让大数据“落地”,有哪些产品实例

问题补充:“大数据”这件事大家提了很久,可是真正能用好的产品少之又少。移动互联网使得更多、更广的数据不断产生,它是否能真正促使大数据“落地”,变成每个人真正能享受到的服务?下面是来自知乎小伙伴maggie的回答:云计算出现之前,传统的计算机无法处理大量的非结构化数据,云计算使得海量数据的存储和快速分析成为可能,而每个人都拥有的智能终端(手机、电脑、智能设备)以及带宽不断增加的移动通信网络,使得海量数据的收集成为可能。大数据的核心在于“预测”,而云计算使数据从“小样本”转变成有机会对所有可能的数据进行分析,预测将基于 “数据之间的关联性” 而非 “为什么是这样的因果性”,我们只需要按照预测出来的趋势去响应,使用这些结果。比如预测机票价格的走势,并给出可信度,帮助用户来决定什么时间购买机票最省钱。它不用关心为什么机票会有差异,是因为季节性还是因为其他什么原因,它仅仅是预测当前的机票未来一段时间会上涨还是下降。如果机票价格有上涨的趋势,系统就系统用户立即购买机票。而原始的数据可以从机票预订数据库或者行业网站上扒下来。这项预测技术可以用在类似的相关领域。比如宾馆预订,商品购买等。比如通过汽车引擎的散热和振动来预测引擎是否会出现故障。亚马逊的推荐系统是很好的例子:亚马逊从每一个客户身上捕获了大量的数据,历史购买了什么,哪些商品只是浏览却没有购买,浏览停留的时间,哪些商品是合并购买的,它要做的是找到产品之间的关联性,感兴趣的可以去搜索亚马逊推荐引擎的专利。在中国,淘宝、支付宝拥有大量的用户数据,还记得 “淘宝时光机吗“ ?通过数据分析,把毕业- 恋爱- 迁移城市-结婚- 买房- 生子- 买车的人生轨迹串起来,我不敢说有多准,但是的确感动了我们。从数据中挖掘出背后的故事,这是一个非常有意思的关联性数据挖掘尝试。想想也挺可怕的,淘宝是个拥有海量用户数据的平台,每天还有源源不断地从移动终端、电脑上不断增加的数据,如果把这些数据利用起来,不止可以做商品购物推荐,同时还可以对可能的关联性做预测。在零售行业,销售数据的统计分析,可以让供应商监控销售速率、数量、以及存货情况,可以知道什么货物和什么货物摆在一起,放在什么位置销量最好,特定的季节,什么产品销量最高。公共设施领域,不再是随机的巡检,而是针对设施上报的数据以及故障发生的历史数据、环境数据进行分析和预测,集中人力和物力优先检查最有可能出现问题的那些设施,减少整体平均的故障发生率。大数据革命首先要把这些可以获得的数据收集上来,包括未来可能被利用的信息。比如很多应用不管是不是需要位置信息,通常都会问你要位置信息,为未来能做出更多的智能反应做数据储备。保险公司通过车险投保人的历史数据(时间、地点、实际行驶路程)来为车险定价。广告公司可以根据人们的居住地点、要去的地方,提供定制广告,信息汇集起来可能会揭示某种发展趋势。交通服务公司可以通过手机的位置来预测交通情况,和某个地方目前聚集了多少人。最近的 ”棱镜计划“ ,从音视频、图片、邮件、文档以及连接信息中分析个人可能对国家安全造成威胁的行动。大数据可用的领域实在是很多,具体有什么好点子,哪些产品有机会,我觉着还得多去想和研究。总结起来,首先是数据收集,除了利用现有的数据渠道之外,还可能需要改造一些产品形态,使得数据更好地被量化和可被学习。然后是通过云计算来做数据相关性的分析,这里面有大量的算法工作要去做,所以未来算法人才是最具有技术挑战的工种。

㈥ 海量移动互联网数据 怎么做数据分析

一、数据量过大,数据中什么情况都可能存在。
如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至 过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时, 前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
二、软硬件要求高,系统资源占用率高。
对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
三、要求很高的处理方法和技巧。
这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。
下面我们来详细介绍一下处理海量数据的经验和技巧:
一、选用优秀的数据库工具
现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软 公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。
二、编写优良的程序代码
处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。
三、对海量数据进行分区操作
对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不 过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷, 而且还可以将日志,索引等放于不同的分区下。
四、建立广泛的索引
对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应 索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完 毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。
五、建立缓存机制
当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。
六、加大虚拟内存
如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理, 内存为1GB,1个P42.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区 上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为 4096*6 + 1024 =25600 M,解决了数据处理中的内存不足问题。
七、分批处理
海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处 理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还 需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。
八、使用临时表和中间表
数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合 并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作, 可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。
九、优化查询SQL语句
在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储 过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表 结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。
十、使用文本格式进行处理
对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择, 是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者 csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。
十一、定制强大的清洗规则和出错处理机制
海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。
十二、建立视图或者物化视图
视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。
十三、避免使用32位机子(极端情况)
目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。
十四、考虑操作系统问题
海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。
十五、使用数据仓库和多维数据库存储
数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。
十六、使用采样数据,进行数据挖掘
基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样 的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出 400万行,经测试软件测试处理的误差为千分之五,客户可以接受。
还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。
海量数据处理专题(一)——开篇
大数据量的问题是很多面试笔试中经常出现的问题,比如 google 腾讯 这样的一些涉及到海量数据的公司经常会问到。
下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样 的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨 论。
本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。拟包含 以下几个方面。
Bloom Filter
Hash
Bit-Map
堆(Heap)
双层桶划分
数据库索引
倒排索引(Inverted Index)
外排序
Trie树
MapRece
在这些解决方案之上,再借助一定的例子来剖析海量数据处理问题的解决方案。
最简单的一点专业的事情让专业的人去做吧 招聘懂的人来做才王道

㈦ 移动互联网如何让大数据,有哪些产品实例

你说的是搜集数据吗?我所在的公司以前做网络安全,现在做了安晟无限城市项目,主要是针对公共场所的无线WIFI,可以搜集到非常详细精准的数据,但是这些数据是不公开的,报备公安机构。

㈧ 大数据处理分析技术类型有哪些

1、交易数据


大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。


2、人为数据


非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流,这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。


3、移动数据


能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。


4、机器和传感器数据


这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。

㈨ 大数据处理的关键技术都有哪些

大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。

1、大数据采集技术

大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。

因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。

2、大数据预处理技术

大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。

因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。

3、大数据存储及管理技术

大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

4、大数据处理

大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。

阅读全文

与移动互联网大数据分析处理技术相关的资料

热点内容
外汇手续低 浏览:403
睿信财富理财 浏览:19
建行理财产品什么时间到账 浏览:530
国家外汇网上平台 浏览:810
龙腾影视股票 浏览:972
美图控股股票 浏览:751
融资租赁空置率 浏览:467
5000刚郎兑换人民币多少钱 浏览:957
4十N融资 浏览:577
股票交易形式 浏览:415
钽股票 浏览:245
全国融资租赁企业 浏览:506
国外汇款工行几天到 浏览:130
合肥融资担保公司 浏览:447
11亿韩元汇率对人民币汇率 浏览:479
大智慧交易资金账号 浏览:759
今日谢克换人民币多少钱 浏览:105
正大杭州湾慈溪投资有限公司 浏览:75
普天汇丰投资管理有限公司 浏览:701
国内外汇如何开户 浏览:332