导航:首页 > 股市分析 > 斐波那契分析

斐波那契分析

发布时间:2022-12-07 17:44:28

❶ 达芬奇密码计算公式是什么

公式为:A0=0,A1=1,An=A(n-1)+A(n-2)(n>=2,n∈N*)

❷ 斐波那契分析的介绍

《斐波那契分析》是2010年机械工业出版社出版的图书,作者是康斯坦斯·布朗(ConstanceBrown)。

❸ 斐波那契分析的作者简介

作者:(美国)康斯坦斯·布朗(Constance Brown) 译者:李孝君
康斯坦斯·布朗在纽约做了版20多年机权构交易人。之后成立了航空动力学投资公司。随后,康斯坦斯·布朗继续活跃在其家乡南卡罗莱纳州。并通过网络为全球大量的银行及非银行金融机构提供咨询服务。她的许多学生已经开始自己管理资产或在重要机构工作。她认为研讨会和演讲对未来技术的发展有重要贡献。
布朗的第二本书《专业交易人士技术分析》(Journal Analysis for the Trading Professional)被市场技术分析师协会选作特许市场技术分析师3级考试必读本。3级是特许市场技术分析师获取资格的最终考试。布朗已经出版了7本书。她是美国技术分析师协会《技术分析师杂志》(Journal of Technical Analysis)的编辑、美国职业技术分析师协会的会员。

❹ 数学"斐波拉契数列"问题

答案错了,应该是233对。分析如下我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 ---13 (一年后) 兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144 ---233 或者,利用利用斐波拉契数列的通项公式F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n},且令n=13即得:一年后围墙中共有对兔子F(13)=233

❺ 数学归纳法证明斐波纳挈数列

斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(LeonardoFibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

【该数列有很多奇妙的属性】
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

【斐波那契数列别名】
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那契数列
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:0123456789101112
兔子对数:1123581321345589144233
表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)

【斐波那挈数列通项公式的推导】

斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n+ C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

【C语言程序】
main()
{
long fib[40] = {1,1};
int i;
for(i=2;i<40;i++)
{
fib[i ] = fib[i-1]+fib[i-2];
}
for(i=0;i<40;i++)
{
printf("F%d==%d\n", i, fib);
}
return 0;
}

【Pascal语言程序】
var
fib: array[0..40]of longint;
i: integer;
begin
fib[0] := 1;
fib[1] := 1;
for i:=2 to 39 do
fib[i ] := fib[i-1] + fib[i-2];
for i:=0 to 39 do
write('F', i, '=', fib[i ]);
end.
【数列与矩阵】
对于斐波那契数列1,1,2,3,5,8,13…….有如下定义
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
对于以下矩阵乘法
F(n+1) = 1 1 * F(n)
F(n) 1 0 F(n-1)
它的运算就是
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可见该矩阵的乘法完全符合斐波那契数列的定义
设1 为B,1 1为C
1 1 0
可以用迭代得到:
斐波那契数列的某一项F(n)=(BC^(n-2))1
这就是斐波那契数列的矩阵乘法定义.
另矩阵乘法的一个运算法则A¬^n(n为偶数)=A^(n/2)* A^(n/2).
因此可以用递归的方法求得答案.
时间效率:O(logn),比模拟法O(n)远远高效。
代码(PASCAL)
{变量matrix是二阶方阵, matrix是矩阵的英文}
program fibonacci;
type
matrix=array[1..2,1..2] of qword;
var
c,cc:matrix;
n:integer;
function multiply(x,y:matrix):matrix;
var
temp:matrix;
begin
temp[1,1]:=x[1,1]*y[1,1]+x[1,2]*y[2,1];
temp[1,2]:=x[1,1]*y[1,2]+x[1,2]*y[2,2];
temp[2,1]:=x[2,1]*y[1,1]+x[2,2]*y[2,1];
temp[2,2]:=x[2,1]*y[1,2]+x[2,2]*y[2,2];
exit(temp);
end;
function getcc(n:integer):matrix;
var
temp:matrix;
t:integer;
begin
if n=1 then exit(c);
t:=n div 2;
temp:=getcc(t);
temp:=multiply(temp,temp);
if odd(n) then exit(multiply(temp,c))
else exit(temp);
end;
procere init;
begin
readln(n);
c[1,1]:=1;
c[1,2]:=1;
c[2,1]:=1;
c[2,2]:=0;
if n=1 then
begin
writeln(1);
halt;
end;
if n=2 then
begin
writeln(1);
halt;
end;
cc:=getcc(n-2);
end;
procere work;
begin
writeln(cc[1,1]+cc[1,2]);
end;
begin
init;
work;
end.
【数列值的另一种求法】
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距离 x 最近的整数。

【数列的前若干项】
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
10 89
11 144
12 233
13 377
14 610
15 987
16 1597
17 2584
18 4181
19 6765
20 10946

❻ 急!!!菲波纳斯数列

首先说明:在一楼回答的是二B,不懂别他什么什么装懂。
“菲波纳斯数列”是很有名的。因为前n项和=第(n+2)项减去一。你随便写个数列看能很快求出前n项和吗?比如前5项和为1,1,2,3,5=13-1=12;前10项和=144-1=143.菲波纳斯是个数学家,以他的名字命名的数列是因为这个数列可以求出兔子的个数:1,1是表示两个兔子,第二月成熟可生一小兔子,小兔子第二月也成熟也可以生小兔子……

对于提问者所说的:
“如果取n=7的13个数的排列情况来看,它的排列正好是钢琴中13个半音阶的排列次序”----我的回答是:可能是巧合,没有规律的。这和355/113≈3.1415一样的,是巧合。因为巧合了,人们才把一些东西扯到一起的。

以下是斐波拉契数列的简介:

斐波拉契数列
■斐波拉契数列的简介
斐波拉契数列(又译作“斐波那契数列”)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、2l……等等的正方形。这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个[font color=#800080]数列[/font]:1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} (√5表示5的平方根) (19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856)

很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

■斐波拉契数列的出现
13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。书中有许多有趣的数学题,其中最有趣的是下面这个题目:
“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”
斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……
这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。
于是,按照这个规律推算出来的数,构成了数学史上一个有名的数列。大家都叫它“斐波拉契数列”。这个数列有许多奇特的的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近于0.618,正好与大名鼎鼎的“黄金分割律”相吻合。人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。<B>
■斐波拉契数列的来源及关系</B>
斐波拉契(Fibonacci)数列来源于兔子问题,它有一个递推关系,
f(1)=1
f(2)=1
f(n)=f(n-1)+f(n-2),其中n>=2
{f(n)}即为斐波拉契数列。
<B>■斐波拉契数列的公式
</B>它的通项公式为:{[(1+√5)/2]^n - [(1-√5)/2]^n }/√5 (注:√5表示根号5)
■斐波拉契数列的某些性质
■1),f(n)f(n)-f(n+1)f(n-1)=(-1)^n;
■2), f(1)+f(2)+f(3)+……+f(n)=f(n+2)-1
■3),arctan[1/f(2n+1)]=arctan[1/f(2n+2)]+arctan[1/f(2n+3)]

[font class=arr][/font][font class=t1][font size=3]【斐波拉契数列的存在】[/font][/font]
甚至可以说,斐波拉契数列无处不在,以下仅举几条常见的例子
■1.杨辉三角对角线上各数之和构成斐波拉契数列 .
■2.多米诺牌(可以看作一个2×1大小的方格)完全覆盖一个n×2的棋盘,覆盖的方案数等于斐波拉契数列。
■3. 从蜜蜂的繁殖来看,雄峰只有母亲,没有父亲,因为蜂后产的卵,受精的孵化为雌蜂,未受精的孵化为雄峰。人们在追溯雄峰的祖先时,发现一只雄峰的第n代祖先的数目刚好就是斐波拉契数列的第n项Fn。
■4.钢琴的13个半音阶的排列完全与雄峰第六代的排列情况类似,说明音调也与斐波拉契数列有关。
■5.自然界中一些花朵的花瓣数目符合于斐波拉契数列,也就是说在大多数情况下,一朵花花瓣的数目都是3,5,8,13,21,34,……(有6枚是两套3枚;有4枚可能是基因突变)。
■6.如果一根树枝每年长出一根新枝,而长出的新枝两年以后,每年也长出一根新枝,那么历年的树枝数,也构成一个斐波拉契数列 .

[font class=arr][/font][font class=t1][font size=3]【斐波拉契数列与黄金分割】[/font][/font]
斐波拉契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波拉契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n-1)/f(n)-→0.618…。由于斐波拉契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波拉契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

不仅这个由1,1,2,3,5....开始的"斐波拉契数"是这样,随便选两个整数,然后按照斐波拉契数的规律排下去,两数间比也是会逐渐逼近黄金比的.
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那契数列

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:0 1 2 3 4 5 6 7 8 9 10 11 12
兔子对数:1 1 2 3 5 8 13 21 34 55 89 144 233
表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)

斐波那契数列:1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} (√5表示5的平方根)

通项公式的推导方法二:普通方法

设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1

n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)

那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的[font color=#800080]等比数列[/font]的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

❼ 什么是斐波那契数列

斐波那契数列数列从第3项开始,每一项都等于前两项之和。

例子:数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........

应用:

生活斐波那契

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。

斐波那契数与植物花瓣3………………………

百合和蝴蝶花5……………………

蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………

翠雀花13………………………

金盏和玫瑰21……………………

紫宛34、55、89……………雏菊

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。

叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

黄金分割

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

(7)斐波那契分析扩展阅读:

性质:

平方与前后项

从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1。

如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。

(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)

证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)

发明者:

斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

股票分析:斐波那契数列线是怎么做出来的

高手谈不上!算手痒相互交流吧!我谈点斐波那契数列的个人观点吧:1、版1、2、3、5、8、13、21.....这样的前数家后权数等于下一个数的数字组合在很多领域都有运用。当然股市也有很多的人士运用。他的神奇在于前一项与后一项之比越来越逼近黄金分割。这在股市上也是很多人热衷的技术运用。甚至在国外还有专门研究的机构。我个人的看法是,它和波浪理论一样。在起算点的把握上存在很大的不确定。这样很难把握住股市的时间仓。加上国内股市的政策因数过多让这个神奇的数字在研判上打了很大的折扣。国内很多运用量价关系来研判短期的。在中长期上很多会结合黄金分割。但真的用斐波那契数列的的确不多。我知道有朋友把ma改成斐波那契数列的数值的。不过我没有研究过!作为研究可以试试!不过个人建议不要把实验阶段的指标用于实际操作!呵呵!用空大家交流!

阅读全文

与斐波那契分析相关的资料

热点内容
青岛外汇交易培训 浏览:699
黄金价格4月3日 浏览:735
什么贷款软件可以当天放款 浏览:748
汇添富科创解冻资金好久到账 浏览:546
股票知识知乎 浏览:813
北京专业珠宝翡翠小企业贷款2016 浏览:935
富国中证指数分级基金净值 浏览:196
通过c轮融资 浏览:700
哪些基金收益高稳健 浏览:286
融资平台融资模式 浏览:321
中国黄金集团投资公司 浏览:937
如何把握股票时间和价格关系 浏览:459
燃油价格和PTA有关联吗 浏览:958
银融国际融资公司 浏览:966
2019年5月22日纸黄金价格 浏览:478
后门融资假说 浏览:367
中国银行理财很低 浏览:872
私募基金持股合伙企业 浏览:683
金易国际期货平台 浏览:397
做医药理财 浏览:155