1. 缺口分析和久期分析是计量哪种风险的常用方法
缺口分析和久期分析是计量市场风险的常用方法。
缺口分析和久期分析是对利率变动版进行敏感性权分析的方法之一,久期分析是衡量利率变化对银行经济价值的影响,缺口分析是一种比较初级、粗略的利率风险计量方法,久期分析是比缺口分析方法更为先进的利率风险计量方法。
(1)久期分析法扩展阅读:
计量市场风险常用的方法
1、流动资金缺口:主要是指流动资金的充足情况和资产/负债的匹配程度。这代表着银行是否具备筹集足够的现金以满足未来付款需求的能力。
2、VaR:资产负债表中持有待售资产及交易性资产(以公允价值计量)部分的风险价值。
3、杠杆:通常会根据监管要求以及内部确定的指标来计算杠杆比率。通常使用多种方法和规则对风险资产进行加权,并将加权的结果除以权益。根据计算结果,较高风险的资产将分配更大的资本权重,为较低风险的资产将分配较低的资本权重。
2. 在债券投资分析中,凸性和久期有什么作用,怎样实施免疫策略
决定久期即影响债券价格对市场利率变化的敏感性包括三要素:到期时间、息票利率和到期收益率.久期的用途
在债券分析中,久期已经超越了时间的概念,投资者更多地把它用来衡量债券价格变动对利率变化的敏感度,并且经过一定的修正,以使其能精确地量化利率变动给债券价格造成的影响.修正久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大.可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱.
正是久期的上述特征给我们的债券投资提供了参照.当我们判断当前的利率水平存在上升可能,就可以集中投资于短期品种、缩短债券久期;而当我们判断当前的利率水平有可能下降,则拉长债券久期、加大长期债券的投资,这就可以帮助我们在债市的上涨中获得更高的溢价.
需要说明的是,久期的概念不仅广泛应用在个券上,而且广泛应用在债券的投资组合中.一个长久期的债券和一个短久期的债券可以组合一个中等久期的债券投资组合,而增加某一类债券的投资比例又可以使该组合的久期向该类债券的久期倾斜.所以,当投资者在进行大资金运作时,准确判断好未来的利率走势后,然后就是确定债券投资组合的久期,在该久期确定的情况下,灵活调整各类债券的权重,基本上就能达到预期的效果.
久期是一种测度债券发生现金流的平均期限的方法.由于债券价格敏感性会随着到期时间的增长而增加,久期也可用来测度债券对利率变化的敏感性,根据债券的每次息票利息或本金支付时间的加权平均来计算久期.
久期的计算就当是在算加权平均数.其中变量是时间,权数是每一期的现金流量,价格就相当于是权数的总和(因为价格是用现金流贴现算出来的).这样一来,久期的计算公式就是一个加权平均数的公式了,因此,它可以被看成是收回成本的平均时间.
决定久期即影响债券价格对市场利率变化的敏感性包括三要素:到期时间、息票利率和到期收益率.
不同债券价格对市场利率变动的敏感性不一样.债券久期是衡量这种敏感性最重要和最主要的标准.久期等于利率变动一个单位所引起的价格变动.如市场利率变动1%,债券的价格变动3,则久期是3.
3. 久期分析的介绍
久期分析 (Duration Analysis)也称为持续期分析或期限弹性分析,是衡量利率变动对银行经济价值影响的一种方法。
4. 关于久期的解释和计算方法
久期也称持续期,是1938年由F.R.Macaulay提出的。它是以未来时间发生的现金流,按照目前的收益率折现成现值,再用每笔现值乘以现在距离该笔现金流发生时间点的时间年限,然后进行求和,以这个总和除以债券各期现金流折现之和得到的数值就是久期。
『久期,全称麦考利久期-Macaulay ration, 数学定义:
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
Macaulay Duration Example
Macaulay Duration Example
通过下面例子可以更好理解久期的定义。
例子:假设有一债券,在未来n年的现金流为(X1,X2,...Xn),其中Xi表示第i期的现金流。假设利率为Y0,投资者持有现金流不久,利率立即发生升高,变为Y,问:应该持有多长时间,才能使得其到期的价值不低于利率为Y0的价值?
通过下面定理可以快速解答上面问题。
定理:PV(Y0)*(1+Y0)^q<=PV(Y)(1+Y)^q的必要条件是q=D(Y0)。这里D(Y0)=(X1/(1+Y0)+2*X2/(1+Y0)^2+...+n*Xn/(1+Y0)^n)/PV(Y0)
q即为所求时间,即为久期。
上述定理的证明可通过对Y导数求倒数,使其在Y=Y0取局部最小值得到。
在债券分析中,久期已经超越了时间的概念。修正久期大的债券,利率上升所引起价格下降幅度就越大,而利率下降所引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强;但相应地,在利率下降同等程度的条件下,获取收益的能力较弱。
正是久期的上述特征给我们的债券投资提供了参照。当我们判断当前的利率水平存在上升可能,就可以集中投资于短期品种、缩短债券久期;而当我们判断当前的利率水平有可能下降,则拉长债券久期、加大长期债券的投资,这就可以帮助我们在债市的上涨中获得更高的溢价。
5. 缺口分析和久期分析采用的都是什么敏感性分析方法
两者采用的都是利率敏感性分析方法
6. 久期是用来干什么的,如何计算啊有例题吗
久期在数值上和债券的剩余期限近似,但又有别于债券的剩余期限。在债券投资里,久期被用来衡量债券或者债券组合的利率风险,它对投资者有效把握投资节奏有很大的帮助。 一般来说,久期和债券的到期收益率成反比,和债券的剩余年限及票面利率成正比。但对于一个普通的附息债券,如果债券的票面利率和其当前的收益率相当的话,该债券的久期就等于其剩余年限。还有一个特殊的情况是,当一个债券是贴现发行的无票面利率债券,那么该债券的剩余年限就是其久期。另外,债券的久期越大,利率的变化对该债券价格的影响也越大,因此风险也越大。在降息时,久期大的债券上升幅度较大;在升息时,久期大的债券下跌的幅度也较大。因此,投资者在预期未来升息时,可选择久期小的债券。 目前来看,在债券分析中久期已经超越了时间的概念,投资者更多地把它用来衡量债券价格变动对利率变化的敏感度,并且经过一定的修正,以使其能精确地量化利率变动给债券价格造成的影响。修正久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。 久期的计算: 久期是债务工具到期期限的加权平均时间,权重就是单个现金流的现值除以总现金。若权重用W(t)表示,然后再乘以现金流发生的时间(t/m此处t代表现金流的序次数,m代表每年发生的现金流的次数),计算结果相加即可得到久期。 久期的计算公式: 通常,久期值还得再除以1+y/m加以修正,y即债务工具的收益率,m为每年发生现金流的次数,这个修正久期用D表示,即D =D/(1+y/m)。
7. 谁能告诉我久期分析是什么
久期分析也称为持续期分析或期限弹性分析,是衡量利率变动对银行经济价值影响的一种方法。具体而言,就是对各时段的缺口赋予相应的敏感性权重,得到加权缺口,然后对所有时段的加权缺口进行汇总,以此估算某一给定的小幅(通常小于1%)利率变动可能会对银行经济价值产生的影响(用经济价值变动的百分比表示)。
8. 久期缺口怎么理解
久期缺抄口是用来测量银行资产负债的利率风险的工具,即资产加权平均久期和负债加权平均久期与资产负债率乘积的差额:
①当久期缺口为正值时,市场利率下降,银行的市场价值将增加;市场利率上升,银行的市场价值将减少。
②当久期缺口为负值时,市场利率上升,银行净值将增加;市场利率下降,银行净值将减少。久期缺口的绝对值越大,银行对利率的变化越敏感,银行的利率风险暴露量越大。
(8)久期分析法扩展阅读:
在利率波动的环境下,利率风险不仅来自于浮动利率资产与浮动利率负债的配置状况,久期缺口也来自于固定利率资产与固定利率负债的配置状况。久期缺口管理就是通过相机调整资产和负债结构,久期缺口使金融机构控制或者实现一个正的权益净值以及降低再投资或融资的利率风险。
久期缺口实际上假设了利率对任何一种资产和负债的影响都是相同的.久期缺口而事实上并非如此,利率的波动对不同的资产和负债的影响强度差别是非常大的。另外,利率相关的隐含期权问压,久期缺口如可提前赎回债券、保单退保等,久期缺口由于其执行时间很难确定,因此在缺口选择上存在很大的问题。
9. 谁知道久期的应用
久期分析 (Duration Analysis)也称为持续期分析或期限弹性分析,是衡量利率变动对银行经济价值影响的一种方法。具体而言,就是对各时段的缺口赋予相应的敏感性权重,得到加权缺口,然后对所有时段的加权缺口进行汇总,以此估算某一给定的小幅(通常小于1%)利率变动可能会对银行经济价值产生的影响(用经济价值变动的百分比表示)。 各个时段的敏感性权重通常是由假定的利率变动乘以该时段头寸的假定平均久期来确定。一般而言,金融工具的到期日或距下一次重新定价日的时间越长,并且在到期日之前支付的金额越小,则久期的绝对值越高,表明利率变动将会对银行的经济价值产生较大的影响。久期分析也是对利率变动进行敏感性分析的方法之一。 银行可以对以上的标准久期分析法进行演变,如可以不采用对每一时段头寸使用平均久期的做法,而是通过计算每项资产、负债和表外头寸的精确久期来计量市场利率变化所产生的影响,从而消除加总头寸/现金流量时可能产生的误差。另外,银行还可以采用有效久期分析法,即对不同的时段运用不同的权重,根据在特定的利率变化情况下,假想金融工具市场价值的实际百分比变化,来设计各时段风险权重,从而更好地反映市场利率的显著变动所导致的价格的非线性变化。 与缺口分析相比较,久期分析是一种更为先进的利率风险计量方法。缺口分析侧重于计量利率变动对银行短期收益的影响,而久期分析则能计量利率风险对银行经济价值的影响,即估算利率变动对所有头寸的未来现金流现值的潜在影响,从而能够对利率变动的长期影响进行评估,更为准确地估算利率风险对银行的影响。但是,久期分析仍然存在一定的局限性。第一,如果在计算敏感性权重时对每一时段使用平均久期,即采用标准久期分析法,久期分析仍然只能反映重新定价风险,不能反映基准风险,以及因利率和支付时间的不同而导致的头寸的实际利率敏感性差异,也不能很好地反映期权性风险。第二,对于利率的大幅变动(大于1%),由于头寸价格的变化与利率的变动无法近似为线性关系,因此,久期分析的结果就不再准确。
10. 货币金融学得久期分析问题
银行的资产主要是放出去的贷款,利率上升,贷款的收益现值就减少,所以银行的资产市值也下降