A. 制造业如何利用大数据
制造业如何利用大数据
如果你正在进行大数据项目,那么有四个因素需要牢记。
1.数据不能脱离实际环境
首先需要说明的是,脱离实际环境的数据的作用将会大打折扣。在生产制造领域,所谓的实际环境可以用工作任务或者执行步骤来提供。每一段数据必须与正在执行的任务或者正在生产的产品本身相关联,并且与任务的特性相联系。这个环境可以用于任务与任务之间的对比,用来检测显着差异。使用生产制造大数据的第一步就是搜集环境或者事件信息CONTROL ENGINEERING China版权所有,然后这些信息与工厂的历史数据相关联。幸运的是,主要的工厂历史数据备份工具供应商都提供了事件和环境插件,可以将MES流程或者执行系统的作业步骤与历史数据相关联。
2.分析优化
第二个需要考虑的因素是,虽然在线历史数据是一个保存数据的很棒的工具控制工程网版权所有,但是对于分析数据却有点束手无策。一种好方法是使用离线备份或者数据库用于分析。大多数工厂的历史数据库对存取数据都进行了优化,当需要为大数据分析从正在运行的在线系统提取大量数据时,往往需要花费很多时间。更好的策略是将历史数据周期性地备份到离线系统中,或者将数据固化到数据库中,以便用于大数据的优化分析。
3.考虑样本容量
第三个需要牢记的因素是你必须选择正确的数据样本。为了具有说服力,确保样本容量足够大,这样才能够足以发现内在关系和因果关系。较小的样本容量有可能得到并不正确的内在关系,使你南辕北辙。还有很重要的一点就是不要将内在关系和因果关系混淆起来CONTROL ENGINEERING China版权所有,因为具有内在关系的事物不一定具有因果关系。数据分析可以发现内在关系,但是如果想要明确事物之间是否存在因果关系则还需要很多工作。大数据分析项目必须引入工程师或者科学家,确保使用工程分析手段能够得到真实的因果关系,这样一来数据才发挥了最大价值。
4.鼓励人员参与
最后一个需要牢记的因素是在有些情况下靠人员来发现规律比靠系统自动完成更加靠谱。你可以指派人员对数据库进行查询并发现某些规律。有经验的操作人员通常对生产系统和相互之间的关系有较深入的认知,他们能够发现一些被隐藏或不明显的内在关系。
为保存的数据增加环境信息,使用经过分析优化的数据、客观陈述和足够的样本容量,并对内在关系和因果关系进行合理的总结控制工程网版权所有,以及利用人员进行数据挖掘,这些都是生产制造大数据项目的关键组成部分。确保你的项目考虑了这些方面,大数据分析才真正在你的生产车间中落到实处。
B. 制造业数据分析存在哪些问题
制造业数据缺乏整合与利用的现象较为突出
在生产、质检、管理等各个环节,制造行业都在产生着庞大的数据量。由于内部信息系统之间缺乏统一的平台对数据进行关联、整合及联通,导致产销存等各环节无法协同工作,难以完全释放数据的真正价值。
制造业数据普遍缺乏分析与可视化处理能力
目前,多数制造企业还在用传统的电子看板以及报表,最终输出的结果是包含了大量数据的表格,无法实时、直观的呈现当前的业务状态。而且,由于制造生产过程、质量、成本管理都通过手工形式完成,所以很难与生产系统、管理系统的最新数据进行同步,也就无法生成实时性数据洞察。
传统手工的数据分析方式对员工的工作造成了重大的负担
报表的制作要和大量的数据打交道,过程非常繁琐,不仅对于专业能力提出了一定的需求,也很容易产生人为的错误。很多企业一到月末,数据报表的编制甚至会占用员工80%以上的工作时间。对员工的工作造成了很大的负担。
关于制造业数据分析存在哪些问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
C. 分析制造业用什么数据
一呼百应可以为制造业提供企业SaaS、大数据服务和大数据供应链金融三大核心服务。
D. 制造业大数据分析公司哪家好
奥威BI生产可视化系统,全新电子看板与生产数据可视化,打造新一代智慧工厂!
生产现场可视化
生产现场的每一个车间,每一道工序,每一条生产线,所有的生产情况、良品情况、设备负荷情况等,一目了然
生产进度可视化
从生产计划到领料开工,再到在制报工,再到完工入库,完全可视化跟踪,并及时监控异常
物控分析
从生产计划到物料需求计划,再到采购计划的执行情况,监督控制,保证物料及时供应
质量分析
将原材料、半成品、产成品各个环节的质量数据进行分析,找出关键质量原因,提高品控水平
(奥 威 BI大数据分 析十 多年的厂商)
E. 如何分析制造企业的生产类的数据
质量控制主要包含七大手法。确切的说是有老七大手法和新七大手法。老七大手法主要侧重于定量分析,而新七大手法更偏重于定性分析。简单说说老七大手法,包括检查表、分层法、排列图、鱼骨图、直方图、散点图、和控制图。这些操作基本上用Excel都可以完成。
首先搞清楚质量控制的目标,是为了保证质量、发现异常、改进产品。产品在生产过程中的随机波动是不可避免的,质量控制的工作是要确认数据的波动是否超出了已知的范围。但是面对问题很多的情况下,要抓大放小,根据二八法则,解决主要问题。
F. 用数据可视化工具做的制造业数据分析报表是怎么样的
一般是用图形化报表分析。基于强大的数据建模分析能力,为企业提供切实有效的决策支持
(红海ehr提供)
比如人力资源管理数据分析:
人力布局分析:员工背景、员工结构、关键人才分析等
人力动态分析:员工的离职、补充、流动、稳定性分析等
人力成本分析:全面统计人力成本,监控人力成本预算执行
G. 什么是真正的工业领域大数据分析
数据分析思维和业务的理解,是分析师赖以生存的技能。很多时候,工具是锦上添花的作用。掌握Excel+SQL/hive,了解描述统计学,知道常见的可视化表达,足够完成大部分任务。机器学习这类能力,对此类数据分析师不是必须的,Python也一样,只是加分项。毕竟为什么下跌,你无法用数据挖掘解答。
H. 制造业如何搭建数据运营体系
数据化运营系统。拆开看
1、数据化。首先你需要一个数据库,也许简单的SQL就够用了。自己看你的规模,和用户群体。
2、运营。 如果你是传统或者商业公司,业务驱动技术,那么运营就负责给业务部门制造武器。
你的吃穿住行,都会产生数据。
企业内部的每一步动作,都会存在数据。有些数据随着时间流逝,淹没在烦躁的社会中去了,有些数据,被我们耸耸肩,甩掉在脑后。然而,从来就没有人意识到,这些被我们忽略的,都是财富,而且是需要长期积累的财富。
选择好的数据指标
好的数据指标通常有两个基本特征,一是数据指标与目标的相关程度,用来衡量目标的期望值;二是数据指标的准确性与稳定性,以长期稳定的准确的反应目标结果。
除此之外,好的数据指标还应该包括以下特征。首先是易获取,易理解。其次是适应性强,适合不同的运营活动,适合横向与纵向的对比,且与业务的相关性比较密切。除此之外,指标的可持续性也非常重要,而且持续性表现在,口径的统一以及长期可用上。虽然说不同的阶段所关注的指标不一样,但这些指标都要满足上述特点。
数据运营指标体系的搭建套路
业界搭建数据指标体系的套路通常包括两种,一种是以精益数据分析为代表的第一指标法,通过寻找关键指标,然后利用杜邦分析法通过拆解第一关键指标的方式,围绕第一关键指标搭建运营数据指标体系;另一种是根据业务衍变过程(逻辑)构成的海盗数据指标框架:AARRR,与AARRR相近的还有类似于PRAPA,AMAT等数据指标框架。
上述两种套路,最终都殊路同归,最终指向业务核心诉求:收益。而最终将收益拆分,对不同影响因素冠以不同的套路的过程,就是数据指标体系搭建的过程。以B2C电商为例,将目标收益拆分为由客流量、转化率、客单价、购买频率和毛利润率以及成本等指标,随后又将这些核心指标根据影响因素拆分为比如SEM、EDM等单位影响模块,最终由核心指标和影响模块指标构成了完整的数据运营体系。
立体化的数据指标体系
核心指标,影响因素和发展阶段将数据指标变的立体化。由核心指标与影响模块构成的数据模块,伴随着业务发展阶段的变化而变化,最终形成立体化的数据指标体系。
数据指标体系的立体化可以从四维空间的角度去理解,首先的立体化是核心数据指标以及对应因素影响因素所构成的二维数据指标系,随着业务的发展以及人员分工的细分,并在此基础上引入了岗位层级关注度,至此二维数据指标系由二维转变为三维,最终形成一个一个的数据指标模块。其次,随着时间的推移的,业务发展阶段不同关注的核心指标不同,最终形成数据指标模块的动态衍变,最终将数据指标模块衍变为立体化的数据指标体系。
I. 最近在分析工业大数据,目前有哪些针对制造业的大数据
上个世纪初,制造业追求目标是成本更低,出现了可互换零件原理,形成了大批大量生产模式。在上世纪中叶,为了追求更高的质量,这时候采用了全面质量管理。
到上个世纪80年代,市场需要不同的产品,产品的多样化出现,多品种小批量生产模式流行,计算机技术应用到产品设计制造过程,出现了计算机集成制造系统,也就是信息化系统。
不同时代企业追求目标不同,所采用的解决问题的方法也不同。未来的智能工厂追求透明化,要达到透明化的目标,可采用的方法就是分析推理,大数据方法事实上是一种分析推理法。因此,从数字化工厂向智能化工厂转化的过程中面对着海量的数据,需要寻找它们相互之间的联系和隐藏规律,实现透明化的目标。
J. 公司业务数据分析有什么意义呢呢
首先来说,数据分析最大、最直接的作用是生产了数据,这才是真内正数据分析师自己做出来的成绩容。不需要花里胡哨的包装,就像开车一定要看速度和转速表一样,根本不需要模型,不需要思维,不需要概念,就这么简单。
第二点,优化运营管理流程。通过对经营数据分析,我们了解企业运营资源如何合理分配,流程哪里需要优化。比如,通过对销售额波动分析,我们确认是销售单价的影响还是成交数量的变化。通过对库存周转率分析,我们可以推断是采购流程有待完善还是备货策略需要变更。
第三,创造更大的价值效益。通过月度或季度生产损耗或不良品的分析,找到降低物料的损耗系数,降低物料成本,创造更大的收益。通过SKU营收与利润贡献分析,确定哪些是畅销品,哪些SKU是营收与利润的贡献的主体,哪些成品又是淘汰或迭代的范畴。
最后,发现了业务机会。通过分析流失用户属性,对用户进行综合评估,找出挽留价值高,挽留难度低的用户群体,提升了用户留存率。