导航:首页 > 股市分析 > 数据质量分析评估模型的设计与实现

数据质量分析评估模型的设计与实现

发布时间:2021-04-20 03:10:20

① 大数据分析中,有哪些常见的大数据分析模型

很多朋友还没有接触过大数据分析方案,认为其仅仅算是个愿景而非现实——毕竟能够证明其可行性与实际效果的案例确实相对有限。但可以肯定的是,实时数据流中包含着大量重要价值,足以帮助企业及人员在未来的工作中达成更为理想的结果。那么,那些领域需要实时的数据分析呢?

1、医疗卫生与生命科学

2、保险业

3、电信运营商

4、能源行业

5、电子商务

6、运输行业

7、投机市场

8、执法领域

9、技术领域

常见数据分析模型有哪些呢?

1、行为事件分析:行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。

2、漏斗分析模型:漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。

3、留存分析模型留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始化行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。

4、分布分析模型分布分析是用户在特定指标下的频次、总额等的归类展现。

5、点击分析模型即应用一种特殊亮度的颜色形式,显示页面或页面组区域中不同元素点点击密度的图标。

6、用户行为路径分析模型用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。

7、用户分群分析模型用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。

8、属性分析模型根据用户自身属性对用户进行分类与统计分析,比如查看用户数量在注册时间上的变化趋势、省份等分布情况。

模型再多,选择一种适合自己的就行,如何利益最大化才是我们追求的目标

② 如何理解关于数据质量管理系统的整合与优化

1、信息系统数据质量——根据“垃圾进,垃圾出(garbagein,garbageout)”的原理,为了使信息系统建设取得预期效果,达到数据决策的目标,就要求信息系统提供的数据是可靠的,能够准确反应客观事实。如果数据质量得不到保证,即使数据分析工具再先进,模型再合理,算法再优良,在充满“垃圾”的数据环境中也只能得到毫无意义的垃圾信息,系统运行的结果、作出的分析就可能是错误的,甚至影响到后续决策的制定和实行。高质量的数据来源于数据收集,是数据设计以及数据分析、评估、修正等环节的强力保证。因此,信息系统数据质量管理尤为重要,这就需要建立一个有效的数据质量管理体系,尽可能全面发现数据存在的问题并分析原因,以推动数据质量的持续改进。作为信息系统的重要构成部分,数据质量问题是影响信息系统运行的关键因素,直接关系到信息系统建设的成败。
2、大数据环境下数据质量管理面临的挑战,因为大数据的信息系统更容易产生数据质量问题:
(1)在数据收集方面,大数据的多样性决定了数据来源的复杂性。来源众多、结构各异、大量不同的数据源之间存在着冲突、不一致或相互矛盾的现象。在数据获取阶段保证数据定义的完整性、数据质量的可靠性尤为必要。
(2)由于规模大,大数据获取、存储、传输和计算过程中可能产生更多错误。采用传统数据的人工错误检测与修复或简单的程序匹配处理,远远处理不了大数据环境下的数据问题。
(3)由于高速性,数据的大量更新会导致过时数据迅速产生,也更易产生不一致数据。
(4)由于发展迅速,市场庞大,厂商众多,直接产生的数据或者产品产生的数据标准不完善,使得数据有更大的可能产生不一致和冲突。
(5)由于数据生产源头激增,产生的数据来源众多,结构各异,以及系统更新升级加快和应用技术更新换代频繁,使得不同的数据源之间、相同的数据源之间都可能存在着冲突、不一致或相互矛盾的现象,再加上数据收集与集成往往由多个团队协作完成,期间增大了数据处理过程中产生问题数据的概率。
3、数据质量管理策略
为了改进和提高数据质量,必须从产生数据的源头开始抓起,从管理入手,对数据运行的全过程进行监控,密切关注数据质量的发展和变化,深入研究数据质量问题所遵循的客观规律,分析其产生的机理,探索科学有效的控制方法和改进措施;必须强化全面数据质量管理的思想观念,把这一观念渗透到数据生命周期的全过程。
结合大数据的参考框架及数据处理实际需求情况,数据质量管理可以从以下几个方面着手,以多方协作改进,最终实现系统数据处于持续高效可用的状态。
3.1建立数据质量评价体系
评估数据质量,可以从如下4个方面来考虑:①完整性:数据的记录和信息是否完整,是否存在缺失情况;②一致性:数据的记录是否符合规范,是否与前后及其它数据集保持统一;③准确性:数据中记录的信息和数据是否准确,是否存在异常或者错误信息;④及时性:数据从产生到可以查看的时间间隔,也叫数据的延时时长。
有了评估方向,还需要使用可以量化、程序化识别的指标来衡量。通过量化指标,管理者才可能了解到当前数据质量,以及采取修正措施之后数据质量的改进程度。而对于海量数据,数据量大、处理环节多,获取质量指标的工作不可能由人工或简单的程序来完成,而需要程序化的制度和流程来保证,因此,指标的设计、采集与计算必须是程序可识别处理的。
完整性可以通过记录数和唯一值来衡量。比如某类的交易数据,每天的交易量应该呈现出平稳的特点,平稳增加、平稳增长或保持一定范围内的周期波动。如果记录数量出现激增或激减,则需要追溯是在哪个环节出现了变动,最终定位是数据问题还是服务出现了问题。对于属性的完整性考量,则可以通过空值占比或无效值占比来进行检查。
一致性检验主要是检验数据和数据定义是否一致,因此可以通过合规记录的比率来衡量。比如取值范围是枚举集合的数据,其实际值超出范围之外的数据占比,比如存在特定编码规则的属性值不符合其编码规则的记录占比。还有一些存在逻辑关系的属性之间的校验,比如属性A取某定值时,属性B的值应该在某个特定的数据范围内,都可以通过合规率来衡量。
准确性可能存在于个别记录,也可能存在于整个数据集上。准确性和一致性的差别在于一致性关注合规,表示统一,而准确性关注数据错误。因此,同样的数据表现,比如数据实际值不在定义的范围内,如果定义的范围准确,值完全没有意义,那么这属于数据错误。但如果值是合理且有意义的,那么可能是范围定义不够全面,则不能认定为数据错误,而是应该去补充修改数据定义。
通过建立数据质量评价体系,对整个流通链条上的数据质量进行量化指标输出,后续进行问题数据的预警,使得问题一出现就可以暴露出来,便于进行问题的定位和解决,最终可以实现在哪个环节出现就在哪个环节解决,避免了将问题数据带到后端及其质量问题扩大。
3.2落实数据质量信息的采集、分析与监控
有评价体系作为参照,还需要进行数据的采集、分析和监控,为数据质量提供全面可靠的信息。在数据流转环节的关键点上设置采集点,采集数据质量监控信息,按照评价体系的指标要求,输出分析报告。
3.3建立数据质量的持续改进工作机制
通过质量评价体系和质量数据采集系统,可以发现问题,之后还需要对发现的问题及时作出反应,追溯问题原因和形成机制,根据问题种类采取相应的改进措施,并持续跟踪验证改进之后的数据质量提升效果,形成正反馈,达到数据质量持续改良的效果。在源头建立数据标准或接入标准,规范数据定义,在数据流转过程中建立监控数据转换质量的流程和体系,尽量做到在哪发现问题就在哪解决问题,不把问题数据带到后端。
导致数据质量产生问题的原因很多。有研究表示,从问题的产生原因和来源,可以分为四大问题域:信息问题域、技术问题域、流程问题域和管理问题域。信息类问题是由于对数据本身的描述、理解及其度量标准偏差而造成的数据质量问题。产生这类数据质量问题的主要原因包括:数据标准不完善、元数据描述及理解错误、数据度量得不到保证和变化频度不恰当等。技术类问题是指由于在数据处理流程中数据流转的各技术环节异常或缺陷而造成的数据质量问题,它产生的直接原因是技术实现上的某种缺陷。技术类数据质量问题主要产生在数据创建、数据接入、数据抽取、数据转换、数据装载、数据使用和数据维护等环节。流程类问题是指由于数据流转的流程设计不合理、人工操作流程不当造成的数据质量问题。所有涉及到数据流转流程的各个环节都可能出现问题,比如接入新数据缺乏对数据检核、元数据变更没有考虑到历史数据的处理、数据转换不充分等各种流程设计错误、数据处理逻辑有缺陷等问题。管理类问题是指由于人员素质及管理机制方面的原因造成的数据质量问题。比如数据接入环节由于工期压力而减少对数据检核流程的执行和监控、缺乏反馈渠道及处理责任人、相关人员缺乏培训和过程资产继承随之带来的一系列问题等。
了解问题产生的原因和来源后,就可以对每一类问题建立起识别、反馈、处理、验证的流程和制度。比如数据标准不完善导致的问题,这就需要有一整套数据标准问题识别、标准修正、现场实施和验证的流程,确保问题的准确解决,不带来新的问题。比如缺乏反馈渠道和处理责任人的问题,则属于管理问题,则需要建立一套数据质量的反馈和响应机制,配合问题识别、问题处理、解决方案的现场实施与验证、过程和积累等多个环节和流程,保证每一个问题都能得到有效解决并有效积累处理的过程和经验,形成越来越完善的一个有机运作体。
当然,很多问题是相互影响的,单一地解决某一方面的问题可能暂时解决不了所发现的问题,但是当多方面的持续改进机制协同工作起来之后,互相影响,交错前进,一点点改进,最终就会达到一个比较好的效果。
3.4完善元数据管理
数据质量的采集规则和检查规则本身也是一种数据,在元数据中定义。元数据按照官方定义,是描述数据的数据。面对庞大的数据种类和结构,如果没有元数据来描述这些数据,使用者无法准确地获取所需信息。正是通过元数据,海量的数据才可以被理解、使用,才会产生价值。
元数据可以按照其用途分为3类:技术元数据、业务元数据和管理元数据。技术元数据:存储关于信息仓库系统技术细节的数据,适用于开发和管理数据而使用的数据。主要包括数据仓库结构的描述,包括对数据结构、数据处理过程的特征描述,存储方式和位置覆盖整个涉及数据的生产和消费环节。业务元数据:从业务角度描述了数据仓库中的数据,提供了业务使用者和实际系统之间的语义层。主要包括业务术语、指标定义、业务规则等信息。
管理元数据:描述系统中管理领域相关概念、关系和规则的数据,主要包括人员角色、岗位职责、管理流程等信息。由此可见,本文提出的解决思路都需要元数据管理系统的支持。良好的元数据管理系统能为数据质量的采集、分析、监控、改进提供高效、有力的强大保障。同时,良好的数据质量管理系统也能促进元数据管理系统的持续改进,互相促进完善,共同为一个高质量和高效运转的数据平台提供支持。
4结语
数据质量(DataQuality)管理贯穿数据生命周期的全过程,覆盖质量评估、数据监控、数据探查、数据清洗、数据诊断等方面。数据源在不断增多,数据量在不断加大,新需求推动的新技术也不断诞生,这些都对大数据下的数据质量管理带来了困难和挑战。因此,数据质量管理要形成完善的体系,建立持续改进的流程和良性机制,持续监控各系统数据质量波动情况及数据质量规则分析,适时升级数据质量监控的手段和方法,确保持续掌握系统数据质量状况,最终达到数据质量的平稳状态,为业务系统提供良好的数据保障。

③ 数据质量分析的主要内容包括哪些

包括:
1、影响GIS数据质量的因素
2、 GIS数据源的质量问题
3、GIS数据库建立过程中的质量问题
4、GIS分析处理过程引入的数据质量问题

④ 教学质量评估系统设计与实现

首先这个系统要有填表的功能,就是填写对每位教师的满意度等基本信息。登录的时候需要用学生的学号。可以根据学号判断出班级,然后根据班级列出授课教师供学生选择。
把采集的信息存放到数据库中。
然后可以对这些信息进行统计,分析。已报表形式、图表形式展现出来。
还可以对上一次采集的信息进行对比,看是否有提高。
对每位教师进行评价,比如该教师 数学 课程优越,但某某课程不及。
这个需要做需求的分析,具体得出需要给教师评价那些类。
评选出最优秀教师,最差教师等等。

可以让学生统一上机,按班级进行统一采集信息。

⑤ DEA数据包络分析中的BCC模型和CCR模型的区别怎么应用

DEA数据包络分析中的BCC模型和CCR模型的区别为:对应模型不同、说明效率不同、存在情况不同。

一、对应模型不同

1、BCC模型:BCC模型对应规模可变的VRS模型。

2、CCR模型:CCR模型对应规模不变的CRS模型。

二、说明效率不同

1、BCC模型:BCC模型可以说明技术效率、纯技术效率和规模效率。

2、CCR模型:CCR模型只能说明技术效率,不能说明纯技术效率和规模效率。。

三、存在情况不同

1、BCC模型:BCC模型存在递增或递减情况。

2、CCR模型:CCR模型既没有递增也没有递减情况。

BCC模型应用于DMU处于变动规模报酬情形下,用来衡量纯技术和规模效率。变动规模报酬与条件相当的受评单位比较。

CCR模型应用于DMU处于固定规模报酬情形下,用来衡量总效率。固定规模报酬是所有DMU一起比较的效率评估。

⑥ 根据需求对数据库进行分析,确定事实数据,维度数据,并设计数据仓库的概念模型

数据仓库的建立过程
①需求分析:绪论、总体需求描述、具体需求、事实及维度、其他需求、用户期望、用户参与、综合实施计划
②数据路线:概念模型设计、逻辑模型设计、物理模型设计、数据装载接口设计
③技术路线:主要是去顶数据仓库的基础构造
数据仓库的基础构造元素分成两大类:
1、操作型基础构造
包括人员、流程、培训和管理软件。
2、物理基础构造
(1)计算机平台
硬件和操作系统
服务器硬件:SMP、群集、MPP、NUMA
数据库管理系统
(2)软件工具
数据获取:ETL
数据存储:数据仓库
信息传递:OLAP、查询和报表、预警系统、数据挖掘

④应用路线:
1、OLAP模型设计
(1)、总体维度分析

(2)、主题的维度设计

(3)、确定事实表度量变量和数据粒度

(4)、定义OLAP模型

2、数据挖掘模型设计

在数据挖掘前,要根据挖掘模型要求转换数据格式,将数据分为训练集合、验证集合,训练集合用于校正模型参数,验证集合用于评价模型的效果。

、信息传递设计

数据仓库的信息潜力很大,数据仓库的信息传递方式是交互式的
⑤数据仓库部署
(1)用户认可
完成用户界面、系统性能方面的所有测试。在关键用户满意前,不要进行部署。
(2)初始装载
数据质量评估、数据安全
(3)桌面准备
客户计算机
(4)初始培训
建立对初始用户的基本使用支持。

⑥运行维护
(1)在数据仓库中建立起DSS应用
(2)刷新当前详细数据、清除过时数据和休眠数据、调整粒度级别、改进系统设计
数据仓库的维护:
①数据周期
从操作型环境中的数据发生变化到这种变化被反映到数据仓库中,需要一定的延迟时间,这个延迟时间就是“数据周期”

②参照完整性
数据仓库中,参照关系随时间变化可能也会变化。
(1)定期对参照数据进行快照
(2)建立参照数据表,记录所有参照数据的修改

③数据环境信息
数据环境信息是指与数据相关的背景信息。
应当将分析的结果数据和产生该结果数据的环境信息一同存放进数据仓库。

④数据备份与恢复
(1)当前数据和历史数据分开
(2)数据量大:完全备份、日志备份、增量备份
(3)周期性存档
(4)备份时间:和增量装载协调进行
(5)备份介质

⑦ 数据质量包括什么方面

数据质量包括数据质量控制和数据治理。

数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。

一个战略性和系统性的方法能帮助企业正确研究企业的数据质量项目,业务部门与 IT 部门的相关人员将各自具有明确角色和责任,配备正确的技术和工具,以应对数据质量控制的挑战。

(7)数据质量分析评估模型的设计与实现扩展阅读:

控制方法:

1、探查数据内容、结构和异常

第一步是探查数据以发现和评估数据的内容、结构和异常。通过探查,可以识别数据的优势和弱势,帮助企业确定项目计划。一个关键目标就是明确指出数据错误和问题,例如将会给业务流程带来威胁的不一致和冗余。

2、建立数据质量度量并明确目标

Informatica的数据质量解决方案为业务人员和IT人员提供了一个共同的平台建立和完善度量标准,用户可以在数据质量记分卡中跟踪度量标准的达标情况,并通过电子邮件发送URL来与相关人员随时进行共享。

3、设计和实施数据质量业务规则

明确企业的数据质量规则,即,可重复使用的业务逻辑,管理如何清洗数据和解析用于支持目标应用字段和数据。业务部门和IT部门通过使用基于角色的功能,一同设计、测试、完善和实施数据质量业务规则,以达成最好的结果。

4、将数据质量规则构建到数据集成过程中

Informatica Data Quality支持普遍深入的数据质量控制,使用户可以从扩展型企业中的任何位置跨任何数量的应用程序、在一个基于服务的架构中作为一项服务来执行业务规则。

数据质量服务由可集中管理、独立于应用程序并可重复使用的业务规则构成,可用来执行探查、清洗、标准化、名称与地址匹配以及监测。

5、检查异常并完善规则

在执行数据质量流程后,大多数记录将会被清洗和标准化,并达到企业所设定的数据质量目标。然而,无可避免,仍会存在一些没有被清洗的劣质数据,此时则需要完善控制数据质量的业务规则。Informatica Data Quality可捕获和突显数据质量异常和异常值,以便更进一步的探查和分析。

5、对照目标,监测数据质量

数据质量控制不应为一次性的“边设边忘”活动。相对目标和在整个业务应用中持续监测和管理数据质量对于保持和改进高水平的数据质量性能而言是至关重要的。

Informatica Data Quality包括一个记分卡工具,而仪表板和报告选项则具备更为广泛的功能,可进行动态报告以及以更具可视化的方式呈现。

阅读全文

与数据质量分析评估模型的设计与实现相关的资料

热点内容
政府性价格调节基金 浏览:967
融资客的疯狂 浏览:987
今日黄金价格一钱多少钱 浏览:587
超牛指标 浏览:900
世界最高股票 浏览:164
公益基金是否可以购理财产品 浏览:708
股票加倍仓 浏览:445
国金基金网上交易 浏览:263
瑞刷显示非交易时间 浏览:876
股指期货黄金股 浏览:116
创业融资计划书范文 浏览:162
兵团工融资 浏览:796
中影年年融资 浏览:642
股指期货加1分手续费 浏览:224
ff获得融资 浏览:651
购买外汇申请书 浏览:85
601258资金进出 浏览:50
国际贸易外汇风险 浏览:363
华夏基金有2018年度报告 浏览:235
上市再融资概念 浏览:542