导航:首页 > 股市分析 > 集成电路风险分析

集成电路风险分析

发布时间:2021-04-21 18:03:43

① 2012年半导体集成电路市场分析研究报告,求信誉好,数据权威的分析研究公司

“51报告在线”立足北京,10年行业研究经验解决了成千上万企业投资发展的困扰,为企业决策提供有效的依据。
本半导体集成电路市场分析研究报告分为8个章节由“51报告在线”提供
下面是我简单单列出的本公司《2012年半导体集成电路市场分析研究报告》的部分目录和内容
了解详情请进入本公司网站产看。
第一章 半导体集成电路产业概述
第二章 中国半导体集成电路产业发展环境分析
第三章 中国半导体集成电路产业供需现状分析
第四章 中国半导体集成电路产业总体发展状况
第五章 2011年我国半导体集成电路产业重点区域分析
第六章 半导体集成电路产业市场分析
第七章 半导体集成电路国内重点生产厂家分析
第八章 2012-2016年半导体集成电路产业发展趋势及投资风险分析
〖 描 述 〗
报告主要针对有中国半导体集成电路市场情况、规模、产品种类、结构性、价格、技术发展方向、重点区域及标杆厂商等多方面深度分析。
报告内容对生产企业、供应厂商、研究机构及投资者等了解半导体集成电路产业的市场情况提供重要的参考价值。
〖 目 录 〗

第一章 半导体集成电路产业概述
第一节 半导体集成电路产业定义

第二节 半导体集成电路产业发展历程

第三节 半导体集成电路分类情况

第四节 半导体集成电路产业链分析

一、产业链模型介绍

二、半导体集成电路产业链模型分析

第二章 中国半导体集成电路产业发展环境分析
第一节 中国经济环境分析

一、宏观经济

二、工业形势

三、固定资产投资

第二节 半导体集成电路产业相关政策

一、国家“十二五”产业政策

二、其他相关政策

第三节 中国半导体集成电路产业发展社会环境分析

一、居民消费水平分析

二、工业发展形势分析

第三章 中国半导体集成电路产业供需现状分析
第一节 半导体集成电路产业总体规模

第二节 半导体集成电路产能概况

一、2009-2011年产能分析

二、2012-2016年产能预测

第三节 半导体集成电路产量概况

一、2009-2011年产量分析

二、2012-2016年产量预测

第四节 半导体集成电路市场需求概况

一、2009-2011年市场需求量分析

二、2012-2016年市场需求量预测

第五节 进出口分析

第四章 中国半导体集成电路产业总体发展状况
第一节 中国半导体集成电路产业规模情况分析

一、产业单位规模情况分析

二、产业人员规模状况分析

三、产业资产规模状况分析

四、产业市场规模状况分析

第二节 中国半导体集成电路产业财务能力分析

第三节 产业竞争结构分析

一、现有企业间竞争

二、潜在进入者分析

三、替代品威胁分析

第四节 国际竞争力比较

第五节 半导体集成电路企业竞争策略分析

第五章 2011年我国半导体集成电路产业重点区域分析
第一节 华北

第二节 华南

第三节 华东

第四节 华西

第五节 其他重点经济开发地区

第六章 半导体集成电路产业市场分析
第一节 重点产品

一、市场占有率

二、市场应用及特点

三、供应商分析

第二节 技术分析

一、技术现状

二、创新技术研发及方向

第三节 产品细分

第四节 市场价格分析

第七章 半导体集成电路国内重点生产厂家分析
第一节 A公司

一、企业基本概况

二、企业经营与财务状况分析

三、企业竞争优势分析

四、企业未来发展战略与规划

第二节 B公司

一、企业基本概况

二、企业经营与财务状况分析

三、企业竞争优势分析

四、企业未来发展战略与规划

第三节 C公司

一、企业基本概况

二、企业经营与财务状况分析

三、企业竞争优势分析

四、企业未来发展战略与规划

第四节 D公司

一、企业基本概况

二、企业经营与财务状况分析

三、企业竞争优势分析

四、企业未来发展战略与规划

第五节 E公司

一、企业基本概况

二、企业经营与财务状况分析

三、企业竞争优势分析

四、企业未来发展战略与规划

第八章 2012-2016年半导体集成电路产业发展趋势及投资风险分析
第一节 当前半导体集成电路市场存在的问题

第二节 半导体集成电路未来发展预测分析

一、2012-2016年中国半导体集成电路产业发展规模

二、2012-2016年中国半导体集成电路产业技术趋势预测

三、总体产业“十二五”整体规划及预测

第三节 2012-2016年中国半导体集成电路产业投资风险分析

一、市场竞争风险

二、原材料压力风险分析

三、技术风险分析

四、政策和体制风险

五、外资进入现状及对未来市场的威胁

第四节 专家建议

② 如何提高集成电路成品率

面向高成品率设计的EDA技术


成品率下滑已成为当今纳米集成电路设计中面临的最大挑战之一。如何在研发高性能IC同时保证较高的成品率已成为近年来学术界及工业界关注的热点问题。一芯片成品率在电子产品生产中,成品率问题由于与生产成本以及企业利润直接相关,一直以来受到业界的广泛关注。如果产品的成品率过低,将会使生产成本陡然上升,不仅造成企业利润减少,而且还会降低产品的市场竞争力,甚至造成整个产品项目的失败。成品率问题的重要性同样也体现在作为电子产品及IT产业的支撑产业——集成电路(IC)的设计和生产中。而且,在IC的设计和生产中成品率问题显得更加突出,这主要与IC设计及制造的特点有关。首先,集成电路生产工艺十分复杂,一个芯片的产生往往要经过几十甚至上百道工艺步骤,生产周期较长,在整个制造过程中任何一个工艺步骤上的偏差都将会对产品成品率造成影响。其次,集成电路生产的投资巨大,一条普通生产线往往需上亿美元,先进生产线的造价更是惊人。如果流片的成品率过低(30%以下),将缺乏市场竞争力,难以付诸批量生产。成品率问题目前已成为影响IC设计及制造企业投资风险的关键因素之一。因此,许多IC开发项目甚至不惜适当降低IC的性能指标来满足成品率的要求,这样至少可以使产品进入市场收回投资。近年来,IT产业的迅猛发展,为了追求IT产品的高性能及便捷性,IC规模不断扩大,特征线宽不断缩小,当前国际上CMOS的主流工艺已由几年前0.25μm降至0.10μm以下。90纳米及60纳米生产线正在成为下一代主流生产线,而成品率下滑已成为当今纳米集成电路设计中面临的最大挑战之一。而且,随着无线产品的大量应用,对带宽及器件响应速度也提出了更高的要求,高性能的射频集成电路及微波单片集成电路(RFIC、MMIC)的研发以及新材料、新工艺、新器件的大量采用为IC设计带来了前所未有的挑战。这些因素大大增加了IC制造过程中的不确定性,使得IC产品的成品率更加难以控制。由于成品率问题的重要性,在当前的IC研发中,对成品率问题的考虑已渗透到IC设计制造的各个阶段。如何在研发高性能IC同时保证较高的成品率已成为近年来学术界及工业界关注的热点问题。二借助EDA技术提高成品率影响IC成品率的因素有很多,但主要来自两个方面:第一是工艺线水平、材料特性及环境的影响。在IC制造过程中如果工艺线不稳定,将会导致制造结果与设计的偏差,使成品率降低。同时,不同材料有着不同的加工工艺,加工难度也不一样,材料特性也是影响成品率的重要因素。而环境因素如温度、湿度等也会对IC的品质造成影响,从而引起成品率降低。在工艺方面最突出的就是缺陷对成品率的影响。缺陷是由于IC工艺线不稳定,使理想的IC结构发生变化,如金属条变形、粉尘颗粒与冗余物的出现等。针对这些问题主要通过改进、调整工艺线、进行工艺过程控制(SPC)来解决。第二是来自设计方面的影响。如果在IC设计中参数设计不合理,则会导致IC性能上的缺陷,造成成品率过低。同样在结构设计方面的不合理也会造成成品率问题。针对此类问题主要通过改进参数及结构设计,增加冗余结构设计等方法改善成品率。除了工艺线的调整与控制需完全在制造阶段考虑外,其他有关成品率问题都可在IC设计阶段予以解决或者改善。由于在设计阶段对成品率的问题进行充分考虑,可以有效避免成品率问题带来的风险,因此面向高成品率设计的EDA技术日益受到的重视。目前,无论在工艺方面还是设计方面就利用EDA技术提高成品率设计提出了许多有效的方法。这些方法主要的目的是解决以下三个问题:1.减小设计与制造间的误差。主要是指由于工艺、材料、环境等因素的影响造成的误差,主要通过改进工艺线、改善材料及环境、提高模型精度(建立考虑多种因素的元器件仿真模型)等达到使设计参数与加工后的参数基本一致。例如,在超深亚微米工艺下利用统计学技术,通过对测试数据进行统计学分析及MonteCarlo仿真,针对参数偏差及失效点(缺陷)的统计分布特点建立统计学模型,以及在此基础进行灵敏度分析、成品率分析、优化以有效提高成品率;又如利用OPC(光学校正)技术,可对在光刻过程中产生的与原设计不一致的不规则几何图形进行校正,以减小与原设计的误差。再如超深亚微米工艺下,随着频率提高、特征尺寸减小带来互连线的各种高频效应,由此产生了信号完整性等许多复杂的问题,导致设计参数的偏离。建立有效的互连线模型和实现互连线网快速模拟,这也是面向高成品率设计目前亟待解决的一个重要问题。2.成品率估计。即在投片生产之前,根据工艺及设计的具体情况,利用EDA工具对成品率进行预测,如果成品率达不到预定指标,则需采取进一步改进设计、调整工艺等措施,提高成品率,降低投资风险。如在超大规模集成电路(VLSI)设计中,为了避免工艺缺陷对成品率的影响,通过对缺陷的统计分布情况进行分析,从中得出成品率估计结果。3.成品率优化。在成品率较低的情况下,采用一些工具对成品率结果进行优化(主要指对设计的优化)。如:设计中心法(DesignCentering),通过将设计参数值调整到参数值分布区域的中心,以避免工艺中的随机扰动引起的对电路性能的影响,从而使成品率提高。三常用成品率设计算法目前成品率分析及优化的方法大致可分为两类,一种是数值方法,根据电路方程的特点对成品率进行估算及优化,具有运算速度快、估计结果精确的特点,但是其灵活性差,难以应用于复杂电路中;另一种是统计方法,主要是MonteCarlo方法及其改进方法,这种方法简单灵活,可用于复杂电路的成品率分析及优化,但是其准确性依赖于仿真模型的准确性及仿真次数,而且其运算效率也与模型的复杂程度及仿真次数有关。1.数值方法基于数值算法(国外有的文献也称之为几何算法)的成品率分析及优化技术的研究早在上世纪六七十年代已开展了大量研究,当时主要是针对电路中的成品率问题及容差分析等问题。随着集成电路的出现,这些算法大多数也沿用于集成电路成品率的分析与优化中。数值方法具有运行效率高、计算精确等特点,目前仍在IC设计中具有重要的地位。基于数值方法的成品率分析算法的基本原理是:根据电路设计的性能指标及电路方程,计算出可以接受的电路(符合成品指标的电路)其设计参数的分布区域(以下简称可接受区),然后通过比较可接受区与电路设计参数在制造过程的误差范围的分布区(简称参数分布区),得出对当前设计参数下成品率的估计值,如果成品率过低,可以通过调整设计参数值,改变参数分布区,以提高成品率(成品率优化)。数值方法的原理虽然简单,但是在实际的电路设计中,存在许多问题:一是参数维数问题,电路参数往往多达几十甚至上百个,要分析求解的可接受区域及参数分布区是一个超椭圆(Hyperellipsoid),随着电路参数的增加,电路分析的工作量成几何指数增长,这为成品率的最终分析求解带来很大困难。二是电路方程的复杂性,随着IC性能指标的提高,及新材料、新器件的应用,在分析中需考虑的因素也越来越多,如:耦合、色散、趋肤效应等,电路方程的求解难度大大增加,这可能导致最终的成品率问题无法求解。当然,可以采用一些简并公式和简化方法进行处理,但是这将使成品率分析及优化结果的准确性在成品率问题中主要注重准确性,即结果与实际的一致性,而不是精确性,即对精度要求并不太严格)大打折扣。三是响应函数的形状问题,在成品率优化中,目前主要采用牛顿法、最小二乘法及其改进算法等,针对响应函数呈凸状时,可以较快收敛,得到优化结果,而不适用于响应函数呈凹状的情况。目前在成品率分析及优化中常用的算法有线性切割法、单纯形逼近法、模拟退火法、拉丁方法、椭圆法(Ellipsoidaltechnique)等。近年来,由于IC技术的飞速发展,依靠纯数值方法进行成品率的分析与优化方法,特别是在遇到高阶微分方程求解及物理效应分析时,已经力不从心,在许多应用中受到了限制。随着计算机技术的发展,建模仿真技术的大量应用,基于统计学技术的IC成品率分析优化工具逐渐[工业电器网-cnelc]成为现在EDA中的主流成品率工具。2.统计学方法(统计设计方法)基于统计学的成品率分析及优化算法(在有的文献中称之为统计设计方法)的核心是蒙特卡罗(MonteCarlo)方法。蒙特卡罗方法又称为计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战中研制原子弹的“曼哈顿计划”。该计划的主持人之一,数学家冯·诺伊曼用驰名世界的赌城——摩纳哥的MonteCarlo——来命名这种方法,为它蒙上了一层神秘色彩。其实MonteCarlo方法的基本思想很早以前就被人们所发现和利用,早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19世纪人们用投针试验的方法来决定圆周率л。上世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难(CourseDimensionality)”,传统的数值方法难以对付(即使使用速度最快的计算机)。MonteCarlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。从而使得以前那些本来是无法计算的问题现在也能够得到解决。以前,有许多电路成品率方法是建立在非线性规划的基础上的,如:线性切割法、单纯形逼近法等。这些方法将成品率问题转化为求解约束极值问题,虽然在数学模型建立方面相对比较简单,但是计算上十分繁复。随着电路产品规模的扩大,参与计算的电路参数越来越多,约束函数越来越复杂,这些方法已不适于电路成品率的计算。随着计算机技术的迅速发展,在上个世纪六七十年代出现了一种新的电路成品率分析方法——蒙特卡罗成品率分析方法。这种方法根据蒙特卡罗方法的基本思想,通过计算机随机模拟来计算电路产品的成品率,对于规模较大且比较复杂的电路可在较短的时间内得出分析结果,从而大大地提高了电路成品率分析的效率。蒙特卡罗成品率分析方法至今仍然是一种普遍应用的电路成品率分析方法。按蒙特卡罗法求出的成品率仅为实际成品率的近似统计估值,而且这一近似统计估值与参数抽样规模的大小有关。抽样规模越大,统计估值越精确。一般,为获得合理的估值,需要进行上百次乃至千次试验。这对大规模电路网络来说,电路分析所花费的计算成本是相当可观的,这一点往往限制了蒙特卡罗法的应用范围。单纯应用蒙特卡罗法得不到最佳成品率、最佳额定参数及最佳容差。尽管如此,在电路的统计设计中,蒙特卡罗法仍是一个最基本的方法,并且具有显著的优点,如:虽然计算精度与抽样规模成平方关系,但抽样规模与待求参数的数量无关;方法本身比较简单,易于编程;蒙特卡罗法与产品的可接受区的形状即是否为凸域无关,这对于将此方法应用到成品率的最优化问题无疑是一优点。由于上述优点,蒙特卡罗法至今在电路统计设计中仍然是被人们普遍应用的、强有力的方法。基于蒙特卡罗方法的成品率算法的基本原理:首先根据电路中参数的特点对参数分布情况进行假设(一般是具有特定参数的正态分布),利用计算机伪随机数算法产生一批服从于假设分布的样本点,将样本点值代入电路仿真模型,进行电路仿真,通过比较仿真结果与预定的成品合格指标,对合格样本点进行统计,那么合格样本点数与总样本点数的比值就是成品率的估计值。虽然蒙特卡罗方法原理比较简单,但是在实际应用中需要解决以下几个关键问题:2.1.假设分布与实际分布的一致性。由于电路参数的实际分布需要通过大量的测试才能获得,所以在实际应用中往往采用假设分布代替实际分布,那么假设分布状况与实际分布的偏差大小成为成品率估计准确性的关键。而且实际应用中往往采用改进算法,这些算法大多根据假设的分布情况进行推导,以减少仿真次数。如果假设分布与实际分布之间差别较大,可能使最终成品率估计结果出现错误。2.2.仿真次数。目前在一般的基于蒙特卡罗的成品率分析中仿真次数为200次~2000次。由于蒙特卡罗方法的精度与仿真次数的平方成正比,也就是说仿真次数越多,成品率估计越准确。然而,随着仿真次数的增加,整个成品率分析的时间大大增加。尤其是针对比较复杂的电路,仿真一次时间较长,可能造成一次成品率分析需要几天的时间,这为后面的成品率改进工作带来极大的不便。仿真次数问题是影响成品率分析算法性能的关键问题,目前主要从两个方面解决,一是通过设计抽样策略,通过对挑选具有参数分布特征的样本点进行仿真,以减少仿真次数,如:系统抽样法、重要抽样法等。另一种方法通过减少单次仿真时间来提高成品率分析效率,主要是根据电路的仿真模型的特征,构建快速模型代替原模型进行仿真,如:采用人工神经网络方法、模糊逻辑方法、统计模型等。2.3.模型精确性问题。EDA工具是建立在电路元器件模型的基础上的,模型的精确性直接影响到仿真结果的精确性,同样在成品率分析中,如果模型精度较差,则会造成分析结果不准确,甚至是错误的结果。由于统计设计方法具有不受电路特征限制、方法简单灵活、计算准确等特点,已成为面向高成品率设计EDA技术中的重要组成部分,当前许多国际上著名的大型EDA工具软件如:AgilentADS、Cadence、Synopsys等都集成了专门的统计学工具包或统计设计工具模块,以满足高成品率设计的要求。随着集成电路技术的发展,设计难度的增大,基于统计设计方法的面向高成品率设计EDA技术将在IC设计中具有更好的用武之地。四发展前景随着IC研发及制造企业的竞争日趋激烈,成品率问题作为影响企业经济效益的关键因素,已成为IC设计及制造企业提高产品市场竞争力的重要砝码。目前在许多大型的IC设计及制造企业配有专门的成品率团队。而且出现了许多以解决成品率问题的集成电路设计服务公司。如PDFSolutions公司就是一家专为晶圆厂和代工厂提供成品率优化解决方案的供应商,而且目前正有意向EDA领域拓展,并推出了一种工具pDfx,它可在数字IC设计过程的物理综合阶段改善设计并提高成品率,预计该软件的年使用费为15万美元。EDA工具开发方面更是掀起一股热潮,自2002年以来几乎每年都有新的成品率EDA工具发布,如:2003年ChipMD公司推出成品率优化工具软件DesignMD,可根据加工数据统计和操作条件调整模拟/混合信号器件晶体管的尺寸,使成品率提高30%,性能提高50%。该软件可运行在Unix和Linux平台下,其一年使用期的定价为5万美元。而且近年来许多老牌的EDA公司Cadence、Synopsys等也纷纷推出成品率优化工具包,如:Cadence公司推出的EncounterDiagnostics工具,Silvaco公司推出的SPayn等。而且值得一提是一些小型EDA公司单纯以DFY(DesignforYield)统计设计工具为产品,取得十分喜人的市场业绩,如:ZKOM公司的CrystalYield,ChipMD公司的DesignMD等,由此可见基于统计技术的DFY技术备受业界推崇,而且统计DFY-EDA具有较好的市场前景。面向高成品率设计的EDA工具已成为EDA软件业一个新的增长点。目前国内在这方面已开展了相当多的研究,如西安电子科技大学在缺陷导致的IC功能成品率问题方面的研究、浙江大学在利用光学校正技术(OPC)改善IC成品率的研究等都取得较好的成果。但是由于我们国内EDA软件产业发展起步较晚,目前国内具有自主知识产权的商用面向高成品率设计的EDA工具尚不多见。我国集成电路产业正处于高速发展阶段,当前进一步开展面向高成品率设计的EDA技术研究以及完善EDA工具软件的研制对提升我国集成电路技术水平及IC设计制造企业竞争力具有十分重要的意义,而且对我国EDA软件产业的发展也具有巨大的推动作用。



---------------------------

晶片内芯片布局对成品率的影响

通常,在晶片内芯片布局设计中总是要想办法使每片晶片内含有最大的芯片数,从而具有最高的芯片生产率。然而芯片生产输出产量还会受到很多其它因素的影响,特别是会受到分步重复曝光机的曝光时间和在探针台上的测试的次数的影响。这就意味着这种晶片内芯片的某种布局策略不一定会得到最高的成品率。WaferYield Inc.公司总结了16家集成电路制造企业的生产情况,经研究发明出了一种较好的晶片内芯片布局方法,它能提高芯片成品率从而提高产量输出。用这种方法可以使芯片成品率提高6%。

WaferYield公司总裁兼CEO的 Ron Sigura说:“我们发现,在一片晶片上用两种不同的芯片布局方法可以设计得到相同的芯片数目,但分步重复曝光机的产量输出的差别可以高达18%。”他解释说,平均而言分步重复曝光或扫描曝光机设备平均7%的产能是用于生产位于晶片边缘处占芯片总数1%的芯片,而这些芯片的成品率很小。他们公司的WAMA (Wafer Mapping) 曝光场区/芯片区 布局系统能综合考虑成品率、曝光机和测试设备的生产效率、投资成本和回报等因素,对各项参数能进行整体的优化,最后得到最优的芯片布局结果。“这种平衡式的布局方法可能不会使每片晶片上的芯片数目达到最大化,但是它将使整体的成品率和生产效率达到最大化。”

这一研究方法显示,大约有一半的公司采用人工布局方法,而另一半的公司则使用内部软件来布局,使晶片上的芯片数最大化。在少数情况下,还会采用使Reticle内曝光场区总数最小化的排布策略。这种方法的出发点是假设所有Reticle曝光场区用到数目相同的掩摸版。然而,如WaferYield主席兼首席技术官Eitan Cadouri所说,今天,这种方法不再是正确的了,因为有些Reticle的曝光区域只包含CMP层(3到7层掩膜),而其它Reticle区域则包含了一 套完整的掩膜版(16~30层掩膜)。CMP区所需要的曝光时间要比其他区域所需要的曝光时间少得多。此外,Cadouri还认为不是所有区域的曝光时间都是完全相同的。“在有些情况下要使用Blading技术,而Blading一个Reticle区域要比正常的区域花更长的时间。“我们对分步重复曝光时间的模拟结果显示,即使芯片数目完全一样,不同的布局方法其步进曝光所需要工艺时间也会有4~18%的差别。

在分步重复曝光机的曝光方面,他们对晶片边缘处一些芯片的曝光时间进行了重新评估,发现可以对提高部分生产效率起到一定的作用。例如,如果分步重复曝光机的曝光光场一次能曝光4个芯片的话,在晶片边缘处进行曝光时,套准过程可能会花费更长的时间,或许其中的一两个芯片对成品率毫无贡献,因为只有部分Reticle的图形在晶片内。

至于测试方面,通常都是用户先做好晶片内芯片的测量布局,然后生成相应的测试布局图。而WAMA软件却能把测试时的一些限制条件,在产生晶片测试布局图时就事先考虑进去。

或许这种布局策略最大的优点是不需要改变任何生产工艺。它支持所有芯片制造商所使用的分步重复曝光机和扫描曝光机,并能帮助工程师对设计、制造、封装和测试各个环节的操作。


----------------------

基于形态学和线性规划方法的成品率增强方法

号上每一点处对应结构元素的最大值;而灰度腐蚀是将结构元素紧贴在信号下方“滑动”,其原点刻画出的轨迹。他们分别记为:f⊕g,fg。对灰度图像的膨胀(或腐蚀)操作有两种效果:如果结构元素的值都为正的,则输出图像会比输人图像亮(或暗);根据输人图像中暗(或亮)细节的灰度值以及它们的形状相对于结构元素的关系,它们在运算中被消减或被除掉。灰度形学中的开闭运算都可以用来提取特征或平滑图像。灰度图像的开运算可以去掉图像上与结构函数的形态不相吻合的凸结构,同时保留那些相吻合的凸结构;而闭运算则会填充那些图像上与结构函数不相吻合的凹结构,同时保留那些相吻合的凹结构。

第五章 关键面积方法研究 21

第五章 关键面积方法研究

本章首先讨论了关键面积概念和对成品率研究的意义,然后研究了现有的开路、短路关键面积基础模型,分析了其不足之处并提出了改进的关键面积应用模型,在此基础上设计了关键面积提取算法。最后研究了故障敏感度分析方法,论述了MC方法和关键面积方法在故障敏感度分析中的统一性。

5.1 关键面积方法概述

集成电路对制造缺陷的敏感程度可用关键面积(Critical
Area)来描述,一般认为关键面积的定义是:集成电路芯片上出现缺陷时必定导致电路产生故障的特殊区域的面积。利用关键面积的概念,某一类制造缺陷在芯片上引起的平均故障数可以表示为:

??Aav?D

积,D是该类缺陷的平均缺陷密度。Aav可以表示为: (3.1) 其中λ是该类制造缺陷在芯片上引起的平均故障数,Aav是该类缺陷的平均关键面

(3.2) Aav??A(R)h(R)dRR0R其中A(R)是粒径为的 缺陷在芯片上的关键面积,h(R)是该类缺陷的粒径分布函RM

数,R0表示版图最小线宽,RM为最大缺陷粒径。关键面积的提出隐含了一个重要的概念:制造过程中当一个粒径为R的缺陷出现在芯片上时,该缺陷并不一定导致电路产生故障,能否导致故障取决于其位置是否在构成关键面积的特殊区域中。

a.缺陷落在关键区域中形成故障 b.缺陷不在关键区域中不导致故障

图3.1导致电路故障的关键区域示意图

关键面积决定缺陷是否导致故障的情形如图3.1所示

22 基于形态学和线性规划方法的成品率增强方法

5.2关键面积基础模型研究

制造缺陷有很多种,但对电路产生的功能故障主要可分为导体层上的线条开路、短路以及导体层间的短路,其中开路故障主要由导体丢失物缺陷引起,而短路故障主要由导体冗余物缺陷引起,层间的短路主要有针孔缺陷等引起。根据每一种缺陷产生故障的机理,需要相应的建立各种缺陷的关键面积模型。

图 3.2 Y×X的芯片上一条长L宽W的金属线


5.2.1 开路关键面积基础模型

考虑如图3.2所示的简单版图模式,一条长为L、宽为W(L>W)的金属线淀积

Rc=R-W Ac(R)=(R-W)L

2W≤R W<R<2W

图3.3 长金属线开路关键区域


第五章 关键面积方法研究 23

于长为Y(Y?L)、宽为X的绝缘衬底上,考虑丢失物缺陷对该金属造成开路的影响。丢失物缺陷要引起金属线条开路必须满足两个条件,第一,缺陷圆粒径必须大于等于线条宽度;第二,缺陷圆的圆心必须落在如图3.3所示的阴影区域中。当这两个条件都满足时,使缺陷圆心必须位于一个长为L、宽为Rc的区域中,并且使金属线条完全断开,这种情况下Rc可和Ac(R)可表示为:


Rc?R?WAc(R)?Rc?L(3.3)

?(R?W)L

定义故障区域宽度Rc与芯片宽度W之比为故障核(相当于归一化故障率),记为K(R?W)。这样,Ac(R)可表示为:

Ac(R)?AchipK(R?W)

(3.4)

图 3.4 长金属线开路故障核


其中Achip表示芯片面积。长金属线的故障核如图3.4所示,故障核可表示为:

?0,??R?WK(R?W)??,

?X

??1,0?R?WW?R?W?XR?W?X(3.5)

24 基于形态学和线性规划方法的成品率增强方法


图3.5 长金属线的开路故障核特性
由故障核可知,当R小于W时,丢失物缺陷是不能导致金属线开路的,即故障率为0,当R?W?X时,说明缺陷粒径比芯片宽度还大,则电路故障率达到最大。由(3.4)得到关键面积为:


0?R?W?0,(3.6) ?Ac(

R)??L(R?W),W?R?W?X

?X?Y,R?W?X?当多条金属线的开路情形时,如图3.6所示的两条相邻金属线条,在缺陷小于

(2W?S)时,关键区域等于两条金属线关键区域之和,但当缺陷粒径大于(2W?S)时,故障区域之间出现重叠区域,如图3.8所示,重叠区域长度xov?R?(2W?S),

则故障区宽度为: (3.7) Rc?

2(R?W)?xov


图 3.6 具有两条导电线条的布线单元图

③ 集成电路是怎样制造出来

集成电路是制造过程:
集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于锗(Ge)的集成电路)和罗伯特·诺伊思(基于硅(Si)的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。

④ 全球多家行业发出警告芯片严重短缺,这会对哪些行业造成影响

芯片短缺对汽车行业的影响则更为明显,这种短缺也导致当前半导体行业的剧变,英特尔在产品延期后解雇了首席执行官鲍勃·斯万,而手机芯片巨头高通也加入了并购的热潮。动力半导体及智能传感器制造商华润微发邮件称,为争取生产线资源,尽量满足供应需求,华润微对产品价格进行相应调整,调整幅度视品种而定。

受新冠名风波影响,5G智能手机等消费电子需求猛增,汽车销售反弹进一步挤压了半导体厂商的产能。产业分析公司VLSIresearch的总裁RistoPuhakka表示:“在整个半导体行业,闲置产能很少,而且需求持续增长。

台积电表示,由于需求激增,其今年的投资至少增加了47%,并表示,将把解决汽车芯片短缺作为“首要任务”。

ElsieNeoh是FusionWorldwide电子元器件分销商的商品经理,他说,整个行业的交付时间已经从新冠名爆发之前的8-10周增加到6个月。

这种短缺也导致当前半导体行业BA033SFP-E2的剧变,英特尔在产品延期后解雇了首席执行官鲍勃·斯万,而手机芯片巨头高通也加入了并购的热潮。

那么,造成全球电子行业芯片荒的原因是什么呢?

一、疫情影响,全球芯片产能下降。

疫情是最直接的原因,由于国际疫情迟迟无法彻底控制,病毒传播风险一直存在,防控力度小,防控措施滞后,导致芯片生产厂商无法全负荷生产,生产效率下降。再者,由于芯片本身制造工艺流程复杂,高端芯片不同生产环节更是由全球不同厂商来完成,只要其中某一个环节受疫情影响无法正常运作,整个芯片制造流程便会陷入停滞,造成整体的产能下降,芯片源头供应量减少,但市场需求量依旧在递增,此消彼长,自然就造成了全球电子行业芯片短缺。

二、美国断供,加剧了芯片短缺状况。

美国将华为、中芯国际列入实体名单,禁止向其供应半导体元件与材料,意图通过彻底断供来遏制头部企业发展,进一步扩大自身对市场的掌控力,本就短缺芯片的年景加上刻意的针对,加剧了国内芯片短缺的状况。作为科技领域新兴的人工智能行业,在芯片短缺的情况下,又会面临怎样的影响?未来又将朝什么方向发展?

总的来说,可以用“短期无虞,长期影响较大”来说明芯片荒对人工智能行业的影响。

首先,人工智能产品的核心是智能算法,算法是决定产品“智能化”的内核因素,而算法要落地到实际应用中,依旧需要芯片来承载;国内人工智能行业依旧处于展露头角的阶段,许多基础的智能算法对芯片性能并没有过于极端的要求,而28nm制程的芯片足以满足多数智能产品需求,目前在28nm制程的芯片上,我国是有一定生产能力的,国内芯片厂商目前的能力可以保证这个水准的芯片供应。

对于断供的尖端7nm以及5nm制程的高端芯片,除了高端智能手机应用外,其他智能产品短时间内不会应用如此尖端的芯片。其次,尖端芯片供应是整个行业都在短缺,供不应求是行业常态。我国人工智能企业通常会选择在核心算法上进行优化以匹配现有的硬件水平,且人工智能产品的商业化应用程度对硬件需求也不高,市场处于培养成长阶段,从成本方面来看,高端芯片也并非主流配置。

最后,芯片短缺对人工智能行业长期影响是比较大的,因为主流市场可能需求不大,但尖端的人工智能技术与算法实验依旧需要尖端芯片进行落地应用,尖端芯片如果长期断供,对核心算法的升级会造成影像,也一定程度上阻碍着尖端技术的进步。

⑤ 投模拟芯片的风险主要有哪些

若干万种集成电路芯片就分三种,模拟电路、数字电路、和存储电路。只能说凡是输出0或1(高电平或低电平)的电路,就是数字电路,典型的有74系列。其它都属于模拟电路或存储电路。

⑥ 中国集成电路发展的出路在哪里

世界上的其它地方都曾出现过好几次IC市场惨淡的局面,但在中国20多年来一直都没有出现,所以IC市场的中心正在不断从美国、欧洲、日本等国家向中国转移,IC的生产中心也在不断地从其他国家或地区转移到中国。去年(2004年)台湾的8寸晶圆生产厂宣布在广东珠海市落户,以及台联电和台积电IC生产厂商在国内苏州、上海投资办厂,一下子把中国的IC产业推向了世界高峰。现在,世界上任何一个IC生产厂家的产品或相同型号的IC几乎在中国都可以找得到,中国IC市场的份额已经占全世界的五分之一以上。并且这个分量还在继续增长,因为中国是一个产品加工能力最强和市场潜力最大的国家。作为一个IC的使用者,我对中国IC产业的发展感到很欣慰,也感到叹息。欣慰的是IC产业在国内的蓬勃发展必然会带动中国电子工业及其他产业的蓬勃发展,并且我们的IC产量和产值很快就可以赶上日本、欧洲和美国。IC的发源地在美国,二十多年前传入欧洲和日本,十年前又传入台湾,现在又传到了中国大陆。在IC产生技术方面,日本用了26年才赶上美国,而台湾只用了十年多一点时间就赶上了美国,这不能不说是一个奇迹。根据统计,2000年以来中国的IC产业每年都有30%以上的速度增长,因此可以估计,用不了十年,中国的IC产业就可以赶上美国。严格来说早在二十年前,国外的IC生产技术就已经传入中国,但中国一直没有把握住机会,因此我们不能不叹息。八十年代末,中国就开始从日本大量引进IC生产技术,当时国内的最大IC厂家742厂(华晶集团)就是在那时候从日本东芝公司引进IC生产技术的,同时向东芝引进IC生产技术的还有韩国三星。现在可以检讨一下中国二十几年来IC产业的发展是个什么样子,我们可以用信息产业部(以前叫电子工业部或四机部)一位领导的真心话来概括:我们二十多年来用于引进IC(彩电用)生产的钱,光利息用来买IC都用不完。是什么原因造成中国IC产业发展这么令人感叹?很多不知情的人都把责任归于日本没有真心向中国人传授技术,那么尔后中国从欧洲引进的IC生产技术又怎么样呢?上海非利蒲半导体厂、上海贝岭半导体、还有深圳的赛意法半导体公司等等,当时引进技术的时候技术水平也应该是很先进的了吧,但为什么也发展不起来?中国没有IC用户吗?中国IC市场的容量每年都有上百亿元的增长,把它摊到任何一个IC企业,这个企业都会被掌死。就良心而论,如果我们不是当年从日本引进了彩电生产技术,中国的电子工业不会像今天发展得这么快。如果拿今天的三星与中国任何一个企业相比,就会知道中国的IC企业到底输在哪里?我认为,中国的IC产业不是人们所认为的是输在生产技术上,因为三星公司也是与中国华晶公司同时引进日本的IC生产技术,并且目前在三星公司工作的很多高级技术人员也是中国人,因此我们只能认为,中国IC产业的失败,是输在管理和体制上。先天不足,后天营养不良,是中国IC产业失败的一个重要原因。中国是一个计划经济色彩很浓的国家,虽然是改革开放了,但一些大的技术引进项目,还需要国家政府部门进行立项、审批和拨款,而目前国内大多数的企业还都是国营企业,国营企业在争取技术引进项目的时候一般都会弄虚作假。这些企业为了争取得到国家技术引进项目,可以说是不择一切手段,其中在写可行性报告的时候,首先是把技术引进的必要性写得天花乱坠,然后把经济效益也写得非常可观,最后把投资写得非常节省,只有国外同类项目的三分之一,目的就是要先拿到项目,资金不足,等上马以后再继续向国家申请,反正生米已经将要煮成饭,国家不可能不给。因此,技术引进项目在一开始就是先天不足,经常是一边引进技术设备一边修改方案,最后把资金用完了,还不能正常生产,更谈不上日后设备更新和技术改造了。如:华晶半导体厂(742厂),IC产生技术引进项目在进行到第一期工程后,因资金不足就基本停止了下来,但为了向政府部门报喜,表示项目超前完成任务,提前出产品,不得不向东芝公司买进IC半成品进行封装,然后打上自己的品牌,一个自力更生,独立生产的IC产品就这样诞生了。但直到今天,华晶半导体厂当年的雄伟目标一直都没有实现过。思想保守,不重视技术引进,企业缺乏活力,是国内IC生产厂家失败的另一个重要原因。在政府领导的眼里,引进IC产生技术和设备,IC产品就可以像面包师烤面包一样,等着面包出炉了,殊不知IC产品最关键的技术还在前头,就是产品技术开发。搞过电路设计的工程师都会清楚,开发一个电子产品,比较复杂一些的一般都需要一年甚至两年的时间,而开发一个IC产品需要的时间还要更长,因为IC样片试制出来后还要作电路试验,还需要整机厂的配合。况且以前搞IC设计基本上都是手工操作(用胶带贴图),特别是搞模拟电路IC设计,对设计师的技术水平(经验)要求更高。光有IC产生技术和设备,还需找米下锅,而IC产品设计,在国内IC产生技术刚引进的时候还是个空白,对IC产品设计人才的培养最少需要三到五年的时间,并且当年连师傅都没有到哪里去培养。因此引进成熟的IC技术产品是解决IC产生厂当时等米下锅的唯一出路,但是在自力更生,自主开发等思想的指导下,只好让IC技术开发人员加班加点,重复别人的劳动,让IC生产设备耐心地等待着新产品的诞生,和静静地等待着衰老。因为,IC产品技术引进多么丢中国人的脸。而在此同时,韩国三星却每年花几亿美金来进行技术引进,然后用同样的生产设备进行IC生产,并把产品源源不断地卖到中国,每年几十亿元的钱也源源不断从中国人的手中流入别人的腰包。你看多可惜,中国就这样失去了一次IC发展的好机会。今天三星半导体公司的产品样样均有,这些产品完全都是他们自己设计的吗?我看不是,我相信大部分产品都是靠引进技术进行生产的;连日本人卖给中国人的生产设备也是通过引进,然后改造再卖给中国。而在国人看来引进设备还可以,但引进技术就是耻辱,中国人能把卫星发射上天,为什么就不能开发IC。20世纪末IC技术得到了长足的发展,特别是个人电脑发明以后,IC生产技术和IC电路开发技术,无论是在效率上或者在性能上,以及在产能上都比前10年最少增长了100倍。英特尔公司在进行80286 CPU电路布图设计的时候基本上还是用手工贴图的方法,而到了80386 CPU电路布图设计的时候才开始采用CAD和EAD技术,正是因为CAD技术的飞速发展才引起今天IC技术的进一步飞速发展。今天IC的生产和开发技术越来越集中,并且产能已基本集中在几个世界级的IC企业手中,而且IC生产是一种高投入,高产出,高风险的行业。中国领导已经初步认识到这一点,要想让现在国内的IC企业(国营企业)直接去追赶国外的IC企业巨头,已经是不可能了,那样只能白白地丢失更多的钱。上个世纪将要结束的时候,国家在IC产业方面进行了政策调整,原来只允许国营企业涉及的IC产业,现在反过来鼓励民营企业进入IC技术领域,并把民营企业的概念延伸到外商在国内投资企业的范围,这一观念的改变使得二十多年笼罩在中国IC产业顶上的阴云,一下子变得豁然开朗,随着台湾IC企业向大陆转移,以及国外IC企业竞争的激烈,和国外留学人员创业的浓厚兴趣,在2000年以后的几年里,中国从事IC技术的企业一下子猛增了400多家,其中大部份都是海归人员新办的IC设计公司,中国IC产业的春天终于到来了。与此同时,在政府提出信息产业要有自己的“心”(CPU)和“脑”(系统软件)的号召下,一些代表国家顶级IC技术的产品,如:方舟1号、2号;龙芯1号、2号;汉芯等CPU产品在政府的大力支持下,在短短的两年里也陆续在不同场合亮了相,并得到政府部门的嘉奖,同时也给中国政府的官员面子增加了光彩,证明政府的支持是正确和有效的。没有人怀疑,CPU不是当今IC技术中的皇冠,英特尔公司独领风骚20多年,靠的就是CPU一枝独秀。但是CPU与其他IC产品不同,它不但需要硬件支持,更需要软件来支持,没有一大帮热血沸腾的软件开发队伍跟进,不断地开发应用软件来支持,任何先进的CPU都会变成废物。对于CPU电路性能的优越性我们暂且不说,但如果我们自己生产的CPU采用的是别人的IP,那么我们的CPU到底有多少优势,能与英特公司抗衡吗?如果我们自己生产的CPU采用的是自己的IP,手中已经掌握大量软件资源的软件公司愿意跟进吗?况且开发自己的IP谈何容易,如果选用别人的IP,还不是需要乖乖的给别人交一笔知识产权费。世界上曾有多少人,想在CPU行业与英特尔公司争夺天下,都没有成功。在英特尔公司刚推出80286的时候,那是个群雄辈出的时代,有西门子、NEC、台湾联电、IBM等好几十家公司跟进;到了80386和80486的时代,世界大部分厂家纷纷倒闭,只剩下几家;再到奔腾CPU的时代,世界CPU的厂家几乎只剩英特尔公司一家,最后有十几家CPU公司联合起来搞一个Power-CPU与英特尔公司的奔腾CPU抗衡也没成功。那么中国IC产业的出路在哪里?实际上这两年华为、中兴等IC开发公司的实际行动已经作了回答,就是要搞那些能与自己产品配套用的IC,或某个新技术领域,别人还没有进入这个领域的新IC,这样才可能会成功。不过,现在华为和中兴的IC开发公司还是处于自己种菜自己吃的小农经济经营方式,只不过是省了点赶集买菜的时间和路费,图了个方便。他们这种小农经济经营方式,注定他们的IC开发公司规模不可能做得很大。他们如果想把IC开发公司规模做大,必须自己构建一个农场或收购一个农场,把自己培养成一个IC专业户。当一种主流文化形成以后,一般人只能跟着它走,谁要是想与它作对,必须量力而行,估计一下自己有没有那么大的实力,和敢不敢付出那么高的成本,如:美国的王安电脑就是因为与众不同,而倒在了IBM电脑的脚下。目前WINDOWS操作系统已经积累了7000多万行原代码,虽然它很不尽人意,但谁想准备用新的操作系统取代它都是一件很难的事情。很多人都希望用LINUX来取代它,这种想法过于简单,在政府的支持下,很多人已经实践了好几年,并且在这方面花的钱起码也有十几亿元,到现在还没有看得出有成功的希望。中国IC产业的发展绝不会像政府官员宣布的那样,缺“心”就是搞CPU——要与英特尔对着干,少“脑”就要搞操作系统——要与微软对着干。如果大家都去搞CPU和操作系统,很多企业都得要完蛋。企业要生存首先是要解决吃饭问题,然后才能求发展,过度地追求高标准,高水平,不先考虑市场的需求和自己的实力,对于一个没有品牌基础的新企业来说,死得更快。中国科学院软件所倪光南院士早在几年前就指出,中国集成电路的发展方向是搞系统芯片和与之相配的嵌入式系统软件。目前在世界上系统芯片虽然还没有形成规模,但嵌入式系统软件发展非常快,从事嵌入式系统软件开发的人员也越来越多,这也给将来系统芯片的发展打下了良好的基础。在这里我不愿意作为算命先生来推算中国最近诞生的方舟、龙芯、汉芯等产品的命运,但如果没有政府的继续支持,可以肯定他们往后的日子非常艰难,但政府鼓励发展自己的CPU也情有独钟,我们无法评论。几年以前我与华邦公司总裁?元先生(他现在是台湾地区SOC促进会主席)进行交流的时候,他就指出:最近美国十几家IC公司联合起来生产POWER-CPU与英特尔公司抗衡,都没成功,今后几年谁再去搞CPU,谁将会死得更快。威盛是唯一一家敢与英特较劲的CPU公司,并且它还是一家生产电脑的公司,要不是他自产自消,它可能很早就倒闭了。除非国产的CPU公司也能自产自消,或者政府一直愿意眷养着,要么这些CPU公司也将很快就会倒闭。元先生原来就是搞CPU出身的,他深知CPU河流的深浅,所以他自己创建公司的时候就没有开发和生产自己的CPU,而是开发计算机图形处理芯片。华邦公司开发成功的两块图形处理芯片(用于电脑显示卡和VCD电脑放映卡)在97年前后出尽了风头,为公司赚足了发展资金。因此,公司在刚上马的时候产品选型非常重要,要么还没等站稳脚跟,产品很可能就要过时和被淘汰。自从晶体管于上个世纪40年代后期、集成电路自60年代初期发明以来,半导体制造技术和计算机产业一直都在按摩尔定律(每隔18个月性能翻一翻)以惊人的速度迅速发展,并创造了人类历史上的“数字文明”。在半导体这样的日新月异的产业领域,对于所有相关企业而言,永远都会有新机遇和新威胁。不管是拥有什么样的业绩和规模的企业,都会面临这样的业务环境的变化。深知半导体产业战略意义的地区和国家为了增强半导体技术的竞争力都在不断投入庞大的资源。同时,半导体产业,技术开发、生产体制和客户企业等全球化趋势也越来越明显。翻开半导体产业发展史,半导体产业首先诞生于美国,然后扩展到欧洲,之后经日本和韩国,发展到台湾和扩展到了中国大陆。展望未来,毋庸置疑的是半导体产业将以惊人的速度在中国出现。所以,产业的发展将沿地区性和全球性两个方向推进。在半导体产业区域扩展的同时,构成这一产业的企业也经历了反复的重组和整合,半导体产业构造的进化始终没有停止过,拥有崭新业务模式的企业将会不断登台亮相。到上世纪80年代后期为止,几乎所有的著名半导体制造商都是独立进行产品的策划、设计、生产和销售。这种业务形式被人们称为“integrated device manufacturers:IDM(集成设备制造商)”。这种业务形式在90年代初很快就被台湾的半导体制造商创造的两种新业务形式所突破。这两种新业务形式之一是专门从事半导体生产的“半导体代工厂商(Foundry)”和专门从事半导体设计的“半导体设计厂商(Fabless)”。这是一种新的资源共享模式,它是由IP(知识产权)供应商和SOC设计服务公司来承担的一种产品设计外包模式。笛卡儿发明的三根直线把欧洲人的思维延伸到无限远的空间,而计算机的发明和应用却把中国人的思维固化在1+1=0的原点上。自从2000年以来,中国突然诞生了400多IC设计公司,这些IC设计公司无一不是从事CPU、DSP、SOC等数字电路器件的技术开发。这些数字电路IC的技术开发需要购买或租用非常昂贵CAD、EAD软件和IC测试设备,并且这些产品的生产工艺以及接口电路已经标准化,IP授权费用很高,产品更新换代速度非常快,一个IC设计公司光靠一个产品很难养活一个公司,因此,在很短时间内将会有一大批IC设计公司被淘汰出局。奇怪的是,那些具有广泛应用的模拟器件或IC,却无人去问津。例如:电源开关管、电源管理IC、音频放大IC等等。这些模拟半导体器件的技术开发,不需要昂贵的IC开发专用CAD、EAD工具软件,甚至用手工同样也可以进行技术开发。因此,模拟半导体器件的利润相对来说比数字电路IC还要高。例如:笔记本电脑、液晶电视、手机、数码相机等产品用的电源适配器或充电器的价值,估计每年超过300亿元,其中半导体器件的价值就超过100亿元;还有CRT电视机、空调等电源使用的半导体器件,总价值将超过300亿元。这么大的半导体市场,却没有人看见,反而大家都?死盯在CPU、 DSP、SOC等这几个电脑专用的技术产品上。在他们看来,只有使用昂贵的CAD、EAD工具软件和IC测试设备,开发出来的大规模集成电路,才算是高新技术,才能给中国人的脸争光。难道电脑比人脑还要更聪明吗?别忘了,每年创收几百亿美金的微软公司的WINDOWS软件产品,是用人的脑子开发出来的;每年创收几十亿美金的CAD、EAD集成电路技术开发工具软件,也是SYNOPSYS、CADENCE和MENTOR等公司的工程师用人的脑子开发出来的。其实数字电路要比模拟电路简单非常多,因为,数字电路基本上都是由与门、或门、非门等三种基础电路组成。因此,一些国外的CAD、EAD集成电路技术开发工具软件提供商,大部分都是把重点放在数字电路技术设计上。模拟电路设计相对来说,要比数字电路困难很多,因为,大部分CAD、EAD工具软件对模拟电路设计都用不上,大部分模拟电路设计还得靠人的工作经验积累,这应该是给中国人留下了一个最好的后门——发展IC技术的最好机会。

⑦ 针对项目芯片行业出现的乱象,下一步将重点做好哪些方面工作

近日,国家发改委回应芯片项目烂尾现象,表示下一步将重点做好:加强规划布局、完善政策体系、建立防范机制、压实各方责任。

1、加强规划布局

按照“主体集中、区域集聚”的发展原则,加强对集成电路重大项目建设的服务和指导,有序引导和规范集成电路产业发展秩序,做好规划布局。引导行业加强自律,避免恶性竞争。

2、完善政策体系

加快落实国发〔2020〕8号文,也就是关于新时期促进集成电路产业和软件产业高质量发展的若干政策,抓紧出台配套措施,进一步优化集成电路产业发展环境,规范市场秩序,提升产业创新能力和发展质量,引导产业健康发展。

3、建立防范机制

建立“早梳理、早发现、早反馈、早处置”的长效工作机制,强化风险提示,加强与银行机构、投资基金等方面的沟通协调,降低集成电路重大项目投资风险。

4、压实各方责任

坚持企业和金融机构自主决策、自担责任,提高产业集中度。引导地方加强对重大项目建设的风险认识,按照“谁支持、谁负责”原则,对造成重大损失或引发重大风险的,予以通报问责。

(7)集成电路风险分析扩展阅读

千亿芯片项目“烂尾”

近日,有记者探访到,武汉弘芯半导体千亿级项目现场已烂尾。据报道,项目似乎因拖欠工程款而完全停工,现场也如烂尾楼一样凋敝。原本号称投资 1280 亿元的半导体项目,如今危机重重,还要拿光刻机去抵押,造芯梦碎了一地。

这个工地位于武汉市临空港经济技术开发区的国家网安基地,面积之大,相当于 59 个足球场。根据视频,现场没有一点施工的迹象:网安大道一侧的厂房还是毛坯,施工器材摆放凌乱,楼旁荒草丛生。

更有媒体报道,甚至,高楼旁的空地上,还有一小块地被开垦成了菜园,里面丝瓜、辣椒等各类蔬菜长势喜人,可见此地荒废已久。

投资超千亿、运行了三年,曾经备受期待的国产芯片项目如今人去楼空,只剩下一个荒芜工地,还有将大陆仅有的一台 7nm 光刻机拿去抵押的唏嘘。

⑧ 5nm芯片集体翻车,出现了哪些问题

近几年,半导体技术的创新和产品更新迭代越来越快,尤其以新款智能手机的升级换代最具代表性。各大手机就纷纷陆续推出了搭载新一代处理器的高端旗舰机型,除了5G、高刷屏、大电池以及高功率快充,新一代的5nm制程工艺芯片,也成为今年各大厂商新款手机必不可少的标配。理论上,芯片的工艺制程越低,功耗越低、能效比也就越高,不过目前看来,现阶段的几款5nm芯片却集体翻车了,功耗和发热普遍偏高,综合表现并不理想。

总而言之,5nm芯片集体翻车,看来主要是由于芯片供应商太过盲目追求性能的提升,而疏忽了功耗和能效的优化,以至于性能虽然增强了,但续航、功耗和发热等方面却拖了后腿。

目前看来,5nm芯片集体翻车,联发科却成了唯一的赢家,并且联发科还有大把时间进行优化和打磨,完全能够有机会进一步的提升。至于发哥最终能有怎样的表现,不妨让我们拭目以待吧!

⑨ 中国芯片技术的“瓶颈”是什么

中国芯片技术的“瓶颈”是中国在芯片技术领域没有核心技术和自主研发能力,没有主导芯片从材料、设计到生产制备的全套技术中任何一个环节。

中国科学院院士、湖南先进传感与信息技术创新研究院院长彭练矛16日在湖南湘潭表示,针对中国半导体材料、制造工艺和芯片设计落后的状况,碳基电子大有所为,其对国产芯片技术突围具有重要价值和意义。

“没有芯片技术,就没有中国的现代化。实现由中国主导芯片技术的‘直道’超车,就是碳基电子的定位和使命。”彭练矛表示,碳基电子的终极使命就是在现有优势下扬长避短,从材料开始,全面突破现有的主流半导体技术,研制出中国人完全自主可控的芯片技术,在主流芯片领域产生重要影响。

(9)集成电路风险分析扩展阅读:

15日至17日,由湖南先进传感与信息技术创新研究院承办的“碳基材料与信息器件研讨会”在湘潭召开,北京大学、清华大学、浙江大学、国防科技大学、中国科学院微电子研究所、电科集团等中国高校、科研机构以及企业的170余名代表参会。

彭练矛在会上作了题为“碳基电子的定位和使命”的主题报告。

⑩ 为什么集成电路不能完全取代分立元件

集成电路制造,芯片面积是第一要素
部分元器件尺寸受限,是无法集成的,最明显的是电容和电感

以常用的220V耐压的电解电容为例,要想在集成电路里实现220V的耐压
、容值几十uF的电容,工艺成本本身就会很高,
因为,集成电路里面的电容一般耐压都小于5V,目前还没有公司能集成
220V耐压电容的,而且在同等面积下,耐压和电容值成反比的。
所以,要想做出这么大的电容,不仅需要非常好的工艺水平,还得需要
很大的芯片面积,可能比本身电路面积大很多倍,比起单独做个电解电容,成本那可就高了不少,
这显然是没事亏钱的行为。
一个显而易见的问题,集成电路发展这么多年,原来大个的电解电容还是那么大个。。。

第二,部分功率器件受电流、散热等方面影响,无法集成,比如说大功率的三极管或MOS管,本身就很烫了,还需要加散热器的,你还要把他往一块集成,指甲盖都不够的地方越来越烫,散热搞不定,电路根本就没办法稳定工作,还随时有烧掉的风险。。。。

总结一句话:集成还是不集成,那是成本的考虑~~

阅读全文

与集成电路风险分析相关的资料

热点内容
p2p理财产品有那些 浏览:238
上海市九卿投资 浏览:623
信托的违约风险 浏览:735
非洲投融资 浏览:574
圣诞来信托 浏览:77
融资结构调整 浏览:187
融资比例越大 浏览:457
投融资平台是什么意思 浏览:147
悟空理财月息 浏览:155
北京电影项目融资 浏览:150
外汇美元骗局 浏览:285
钱时代理财真的假的 浏览:968
海格通信股票股吧 浏览:760
贾探春理财 浏览:711
理财信息平台 浏览:135
大华银行理财怎么样 浏览:769
投资理财演讲稿 浏览:667
投资决策前考虑的因素 浏览:6
代客理财三点 浏览:39
白领理财节 浏览:39