① 回归直线方程的公式
要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,
(1)回归分析公式扩展阅读
回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。
离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.
总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。
② 线性回归方程公式b怎么求
第一:用所给样本求出两个相关变量的(算术)平均值:
x_=(x1+x2+x3+...+xn)/n
y_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)
分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_
分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算 b : b=分子 / 分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中 ,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差.
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
(2)回归分析公式扩展阅读
分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
③ 回归方程公式
回归方程
^y
=
1.8166
+
0.1962x
计算过程:
从散点图(题目有给吧)看出x和y呈线性相关,题中给出的一组数据就是相关变量x、y的总体中的一个样本,我们根据这组数据算出回归方程的两个参数,便可以得到样本回归直线,即与散点图上各点最相配合的直线。
下面是运用最小二乘法估计一元线性方程^y
=
a
+
bx的参数a和b:
(a为样本回归直线y的截距,它是样本回归直线通过纵轴的点的y坐标;b为样本回归直线的斜率,它表示当x增加一个单位时y的平均增加数量,b又称回归系数)
首先列表求出解题需要的数据
n
1
2
3
4
5
∑(求和)
房屋面积
x
115
110
80
135
105
545
销售价格
y
24.8
21.6
18.4
29.2
22
116
x^2(x的平方)
13225
12100
6400
18225
11025
60975
y^2(y的平方)
615.04
466.56
338.56
852.64
484
2756.8
xy
2852
2376
1472
3942
2310
12952
套公式计算参数a和b:
lxy
=
∑xy
-
1/n*∑x∑y
=
308
lxx
=
∑x^2
-
1/n*(∑x)^2
=
1570
lyy
=
∑y^2
-
1/n*(∑y)^2
=
65.6
x~(x的平均数)
=
∑x/n
=
109
y~
=
∑y/n
=
23.2
b
=
lxy/lxx
=
0.196178344
a
=
y~
-
bx~
=
1.81656051
回归方程
^y
=
a
+
bx
代入参数得:^y
=
1.8166
+
0.1962x
直线就不画了
该题是最基本的一元线性回归分析题,套公式即可解答。至于公式是怎么推导出来的,请参见应用统计学教科书。。回归分析章节。。
④ 求回归分析法的公式
在物流的计算中,回归分析法的公式如下:
y=a+bx
b=∑xy-n·∑x∑y/[∑x²-n·(∑x)²];
a=∑y-b·∑x/n
⑤ 线性回归方程公式是什么
y=bx+a
例如:
y=3x+1
因为不知道x前面的系数,和常数项所以设成a,b,a和b通常是需要求的。
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程。
(5)回归分析公式扩展阅读:
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布。
⑥ 一个回归分析的公式,求帮忙解释一下里面的含义
其实最小化回归的意思很好理解的,公式中的Yi是您的观测值,αd是您需要求出的参数(一共有D个,从α1到αD)所以这个式子所表示的是选取合适的α1,α2……αD的值使观测值Yi与估计值αd*bd*xi的方差最小化。直观理解就是选取合适的α1,α2……αD的值使观测值Yi与估计值αd*bd*xi的差异最小。这样的估计量才是无偏的。具体求解时,就是对α1,α2……αD求一阶偏导数为零后联立方程。
⑦ 线性回归方程公式
线性回归方程的公式如下图所示:
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程。
(7)回归分析公式扩展阅读
线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
在统计学中,线性回归方程是利用最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。)
⑧ 回归分析有主要哪四个公式
回归分析,也有称曲线拟合.
当在实验中获得自变量与因变量的一系列对应数据,(x1,y1),(x2,y2),(x3,y3),...(xn,yn)时,要找出一个已知类型的函数,y=f(x) ,与之拟合,使得实际数据和理论曲线的离差平方和:∑[yi-f(xi)]^2(从i=1到i=n相加)为最小.
这种求f(x)的方法,叫做最小二乘法。
求得的函数y=f(x)常称为经验公式,在工程技术和科学研究的数据处理中广泛使用.
最普遍的是直线(一次曲线)拟合,在现代质量管理上,对散布图的相关分析上也用此法.
当然,以上仅介绍了回归分析的一部分简要内容,要详细了解,应读大学,或自学到这个程度.我是自学的,我想你只要坚持不懈的努力,也是会成功的. 我只介绍一元线性回归的基本思想。
X与Y是两个随机变量,我们关心X与Y之间是否存在线性关系,即是否有Y=aX+b?
我们作一系列的随机试验,得到n组数据:
(x1,y1),(x2,y2),…,(xn,yn).
如果我们研究的是确定性现象,当然这n个点是在同一直线上的。但是现在X与Y都是随机变量,即使X与Y之间真的存在线性关系,即确实有Y=aX+b的关系成立,由于随机因素的作用,一般地说,这n个点也不会在同一直线上。而X与Y之间实际上并不存在线性关系,由于随机因素的作用,这n个点在平面上也可能排成象在一条直线上那样的。回归分析,就是要解决这样的问题,即从试验得到的这样一组数据,我们是否应该相信X与Y之间存在线性关系,这当然要用到概率论的思想与方法。
至于回归分析的具体内容,不可能在这里详细介绍了,如果几句话就能让大家都明白,大学就不用办了。
⑨ 回归方程公式详细步骤是什么
求 x、y 的平均数 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2
求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4
接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4
现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7
而 a=y_-bx_=7/2-0.7*9/2=0.35 ,
所以回归直线方程为 y=bx+a=0.7x+0.35 。
(9)回归分析公式扩展阅读:
回归方程的写法:spss数据表中有非标准系数一栏,这其实就是回归方程的系数。对应的变量就是和系数相乘。如果有常数项,就不用和变量值相乘。
若在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。