Ⅰ 十字交叉法的原理是什么
原理在这里,希望看看
http://ke.soso.com/v5116857.htm?pid=ke.box
可以运用有不同的地方。
(一)混和气体计算中的十字交叉法
【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。
【分析】根据相对密度计算可得混和气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是0.5体积
(二)同位素原子百分含量计算的十字叉法
【例题】溴有两种同位素,在自然界中这两种同位素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。
(A)79
、81
(B)45
、46
(C)44
、45
(D)44
、46
【分析】两种同位素大约各占一半,根据十字交叉法可知,两种同位素原子量与溴原子量的差值相等,那么它们的中子数应相差2,所以答案为D
(三)溶液配制计算中的十字交叉法
【例题】某同学欲配制40%的NaOH溶液100克,实验室中现有10%的NaOH溶液和NaOH固体,问此同学应各取上述物质多少克?
【分析】10%NaOH溶液溶质为10,NaOH固体溶质为100,40%NaOH溶液溶质为40,利用十字交叉法得:需10%NaOH溶液为
×100=66.7克,需NaOH固体为
×100=33.3克
(
四)混和物反应计算中的十字交叉法
【例题】现有100克碳酸锂和碳酸钡的混和物,它们和一定浓度的盐酸反应时所消耗盐酸跟100克碳酸钙和该浓度盐酸反应时消耗盐酸量相同。计算混和物中碳酸锂和碳酸钡的物质的量之比。
【分析】可将碳酸钙的式量理解为碳酸锂和碳酸钡的混和物的平均式量,利用十字交叉法计算可得碳酸锂和碳酸钡的物质的量之比97:26
Ⅱ 十字交叉法是什么原理
十字交叉法的数学原理与化学计算张新勇摘要:十字交叉法是中学化学计算中常用的一种方法,但如果使用不当也容易产生错误。本文从数学角度对十字交叉法的原理进行研究,并探索了它在化学计算中的一些具体应用。关键词:十字交叉法 数学原理 二元混和体系 化学计算 一、前言在中学化学教学中,十字交叉法一直作为化学计算中的一种重要方法被广泛使用,十字交叉法具有计算速度快、计算不易出差错等优点。但我在教学实践和教学活动中,发现按传统的思维方法进行教学存在以下问题:(1)学生用十字叉法时带有盲目性,处理较复杂的问题时易产生错误,但对错误产生的原因不甚了解,以致造成由于害怕错误而不敢使用该方法。(2)不少中学化学老师也并未掌握该法的原理,讲授此法时只是简单地告诉学生哪些题型可用十字交叉法求解,不但限制了该法的使用,也束缚了学生的思维。(3)某些参考书在介绍该法时存在一些谬误,如某参考书在总结十字交叉法的运用时,未指明溶液的体积变化可以忽略,就将混合溶液的物质的量浓度与原溶液的体积比列入应用范畴。分析造成以上问题的原因,我认为主要是对十字交叉法的数学原理缺乏清晰的认识。本文将就十字交叉法的数学原理以及在中学化学计算中的应用作一些探索。二、十字交叉法的数学原理对于两个量a、b,其平均值A可由以下方程组确定:a x1 + b x2 = Ax1 + x2 = 1
(1)
若a、b、A已知,则有: a │b-A│----x1 Ab │A-a│----x2
上面的式子可以用如下的格式表示: 由此可见,凡是能建立(1)式这样的方程组的化学题,就能用十字交叉法求解。 三、十字交叉法的物理意义在二元混合体系中,某个物理量R只有两个可能取值a、b;且a出现的几率为x1,b出现的几率为x2,则物理量R的平均值A有:A=ax1+bx2。而物理量R出现的总几率为1即x1+ x2=1。用下面的实例具体说明之。例1 平均摩尔质量为12g/mol的H2和O2的混和气体,求此混和气体中H2和O2的物质的量之比。2g/mol x1+32g/mol x2=12g/mol×1molx1+ x2=1mol解析:设混和气体中H2的物质的量为x1,O2的物质的量为x2,混和气体的总物质的量为1mol。列方程组: H2 2 20 12O2 32 10(2)
用十字交叉法求解: 所以: 即H2和O2的物质的量之比为2 :1对于方程组(2) 中x1、x2及十字交叉式中数字2、32、12的物理意义是什么,到此为止可能还不是很明晰。我们不妨对例1再作一次假设:设混和气体中H2的物质的量为y1,O2的物质的量为y2,混和气体的总物质的量为2mol。显然,可以列出这样一个方程组: (3)
H2 4 40 24O2 64 20用十字交叉法求解: 即H2和O2的物质的量之比为2 :1比较方程组(2)(3),方程组(2)中的x1、x2及十字交叉式中数字2、32、12的物理意义就很明确了。x1和x2分别表示:以一定量(方程组(2)中为1mol;方程组(3)中为2mol)H2和O2的混和体系为基准物,组分1(H2)和组分2(O2)出现的几率;数字2、32、12表示:在一定量基准物质中,对于某个物理量R(方程组(2)、(3)中均为质量),纯组分1和纯组分2以及混和体系的值。因此只要按此思路能建立起方程组(1)的化学体系,都能用十字交叉法求解。值得一提的是,一定量的基准物质和物理量R应满足可加性,即应遵循算术加法(从方程组(1)的表达式即可看出)。这一点对于十字交叉法应用非常重要,很多参考书上的错误就是由于不注意这一点而产生的。如同种溶质的不同物质的量浓度的溶液混合时,由于溶液的体积不具有可加性,即V1+V2≠V。因此不能建立上述方程组,所以有关溶液的物质的量浓度,溶液的密度等涉及溶液体积的问题,不能直接用十字交叉法求解。当然,如果只是进行近似计算,题意特别说明溶液的体积变化可以忽略不计的话,那么溶液的体积就具有可加性了,就可以应用十字交叉法解这类题目。四、十字交叉法应注意的问题(1)二元混和体系如何理解:十字交叉法研究的二元混和体系是指两个不同物质的混和体系或同一物质两个部分的混和体系。我们用组分1和组分2分别表示二元混和体系的两个物质(或两个部分)(2)二个分量和平均量怎样确定:以在一定量(物质的量、质量等具有可加性的物理量)的二元混和体系中,对于某个具有可加性的物理量,纯组分1、纯组分2以及混和体系的值来确定二个分量和平均量。(3)谁比谁:二元混和体系产生的二个分量与平均量之间通过十字交叉所得的值,是组分1和组分2在二元混和体系中的百分比(4)是什么比:一定量基准物质以什么样的物理单位为前提,得出的即是什么比。(5)应用十字交叉法关键的步骤是:选择以怎么物质作为组分1、组分2以及选择混和体系的什么物理量作为分析的依据。因此在应用十字叉法时,一般将一定量的组分1、组分2写在十字交叉式的左边,将作为分析依据的物理量写在十字交叉式的上面,以提高解题的正确性。五、十字交叉法的应用1、有关溶液的稀释、蒸发、溶质质量分数等的应用例2 把100克10%NaNO3溶液浓度变为20%,需加多少克NaNO3?或蒸发多少克水?或与多少克30%的NaNO3溶液混和?解析:①题意可以理解为:将100克10%的NaNO3溶液与NaNO3固体混和,得到20%的NaNO3混和体系。以100g混和体系为基准物,以溶质的质量为物理量,用十字交叉法: 溶质的质量(g)10%NaNO3溶液 10 80100g 20NaNO3 100 10
即m(NaNO3)=12.5克 ②题意可以理解为:将20%的NaNO3溶液与水混和,得到100克10%的NaNO3混和体系。以100g混和体系为基准物,以溶质的质量为物理量,用十字交叉法:溶质的质量(g)20%NaNO3溶液 20 10100g 10水 0 10
又因为 m(20%NaNO3溶液)+m(水)=100g 所以:m(水)=50g③题意可以理解为:将100克10%的NaNO3溶液与30%的NaNO3溶液混和,得到20%的NaNO3混和体系。以100g混和体系为基准物,以溶质的质量为物理量,用十字交叉法:溶质的质量(g)10%NaNO3溶液 10 10100g 2030%NaNO3溶液 30 10
即m(30%NaNO3溶液)=100克2、有关同位素相对原子质量、元素相对原子质量的应用例3 已知氯元素的相对原子质量为35.5,它有 和 两种同位素,求 在自然界中所占原子的质量分数是多少?质量(g) 35 1.51mol 35.5 37 0.5解析:以1mol 和 的混和体系为基准物,以质量为物理量,用十字交叉法:
所以 在自然界中所占原子的质量分数为: 3、有关物质的相对原子质量、平均相对原子质量的应用例4 已知Na2SO3被部分氧化为Na2SO4后,钠元素的质量分数占混和物的36%,则Na2SO3和Na2SO4的物质的量之比为多少?质量之比为多少?解析:①首先求混和物的平均相对原子质量: 然后以1molNa2SO3和Na2SO4的混和体系为基准物,以质量为物理量,用十字交叉法:质量(g)Na2SO3 126 14.21mol 127.8Na2SO4 142 1.8
所以, ②以1gNa2SO3和Na2SO4的混和体系为基准物,以Na元素的质量为物理量,用十字交叉法: Na元素的质量(g) Na2SO3 - 1g Na2SO4 - 所以,Na2SO3和Na2SO4的质量比为( - ) :( - )= 4、有关反应中消耗量、生成量计算的应用例5 将18.5克铁、铝的混和物与足量的稀H2SO4反应,产生氢气的质量是1克,求混和物中铁、铝的质量比?解析:以1mol由铁产生的H2和由铝产生的H2组成的混和体系为基准物,以所消耗的金属的质量为物理量,则该物理量的值分别是:在纯组分1(由铁产生的H2)中的值为56克;在纯组分2(由铝产生的H2)中的值为18克;在混和体系(由铁、铝产生的H2)中的值为37克。用十字交叉法: 消耗金属的质量(g)由铁产生的H2 56 191mol 37由铝产生的H2 18 19
Fe生成的H2与Al生成的H2的物质的量之比为19 :19即1 :1所以, 值得一提的是,如果不注意到本题是以由铁产生的H2和由铝产生的H2(同一个物质的两个部分)作为二元混和体系的二个组分的话,十字交叉法得到的19 :19很容易被误认为是Fe、Al的物质的量之比或质量之比而导致错误。为了进一步理解十字交叉法,我们不妨换个角度,用另外一种方法来解例题5方法二:以18.5克铁、铝的混和体系为基准物,以产生的H2的质量为物理量,则物理量的值分别是:在纯组分1(铁)中的值是0.66克(18.5克铁产生0.66克氢气);在纯组分2(铝)中的值是2.06克(18.5克铝产生2.06克氢气);在混和体系中的值是1克。用十字交叉法: 产生氢气的质量(g)铁 0.66 1.0618.5g 1铝 2.06 0.34
所以, 例题6 已知白磷和氧气可发生如下反应:P4 +3O2 = P4O6 ,P4 +5O2 = P4O10 在某一密闭容器中加入62克白磷和50.4升氧气(标准状况), 使之恰好完全反应, 所得到的P4O10 与P4O6 的物质的量之比是多少?解析:以1mol生成P4O10的P4和生成P4O6的P4组成的混和体系为基准物质,以消耗的O原子的物质的量为物理量,应用十字交叉法:。显然,1molP4全部生成P4O10时消耗O原子的物质的量为10mol;1molP4反应全部生成P4O6,消耗O原子的物质的量为6mol;而题意中生成二者混合物,平均消耗O原子的物质的量为: 消耗O原子的物质的量(mol)生成P4O10的P4 10 31mol 9生成P4O6的P4 6 1
生成P4O10所消耗的P4与生成P4O6所消耗的P4的物质的量之比为3 :1所以,得到的P4O10 与P4O6 的物质的量之比3 :15、有关多元混和体系的问题十字交叉法只适用于二元混和体系,但某些多元混和体系具有特殊性,可以转化为二元混和体系,从而应用十字交叉法求解。例7 丁烷、甲烷、乙醛的混和气体在同温同压下和CO2的密度相同,则三种气体的体积比为( )A.5:1:2 B.1:2:5 C.4:2:7 D.2:1:5解析:混和气体为三元混和体系,但其中乙醛的相对分子质量与CO2相同,无论乙醛取何种体积比,对混合气体与CO2的密度比没有影响。所以要使混和气体密度与CO2相同,取决于甲烷和丁烷的体积比,转化为二元体系的问题。以1mol丁烷和甲烷的混和体系为基准物,以质量为物理量,用十字交叉法: 质量(g)丁烷 58 281mol 44甲烷 16 14
所以,正确选项为C,D6、十字交叉法的逆向应用所谓逆向应用,是指用十字交叉法反求a、b、A的值,此法能使一些难度大的化学计算题简捷地求解。例8 由单烯烃和炔烃两种气态烃组成的混和气体,此混和气体1体积充分燃烧后产生3.6体积CO2和3体积水蒸气。以上体积均为同温同压下测定。求混和气体的组成。解析:简单推导可知1mol混和气体中平均含有3.6molC原子和6molH原子,故混和气体的平均分子式为C3.6H6。设两种气态烃的分子式分别为CnH2n和CmH2m-2(2≤n≤4, 2≤m≤4) C原子的物质的量(mol)CnH2n n m-3.61mol 3.6CmH2m-2 m 3.6-n H原子的物质的量(mol)CnH2n 2n 2m-81mol 6CmH2m-2 2m-2 6-2n以1mol烯烃和炔烃的混和体系为基准物,分别以C原子、H原子的物质的量为物理量,用十字交叉法: 因为两烃只有一种确定的物质的量比,所以: 化简得: 进行讨论:m=2 n=6 不合理 m=3 n=4.5 不合理m=4 n=3 合理 将m=4,n=3代入十字交叉式,得炔烃与烯烃的物质的量比为3 :2结论:混和气体组成为C4H6占60%,C3H6占40%。
Ⅲ 十字相乘法的原理
(a+m)(a+n)
=a^2+(m+n)a+mn
十字交叉相乘法就是逆用了上面的式子
Ⅳ 十字交叉法原理解析是什么
十字交叉法原理就是一种二元一次方程的解法,具体如下:
x + y = 1
ax + by = c
c介于a与b之间,求解:x:y。
(4)十字法则分析扩展阅读
十字交叉法是解二元一次方程式的图解形式,应用于解二元混合体系且与平均值有关的计算问题。它是一种具有简化解题思路、运算简便、计算速度快、计算不易出差错等优点的解题方法。
使用该法则的具体方法如下:像A的浓度为10,B的浓度为8,它们的混合物浓度为9,你就可以把9放在中间,把10和8写在左边,标上AB,然后分别减去9,可得右边分别为1和1。此时之比就为1:1。
Ⅳ 十字交叉法原理是什么
十字交叉法原理就是一种二元一次方程的解法,具体如下:
x + y = 1
ax + by = c
c介于a与b之间,求解:x:y。
(5)十字法则分析扩展阅读
十字交叉法常用于求算:
(1)有关质量分数的计算。
(2)有关平均相对分子质量的计算。
(3)有关平均相对原子质量的计算。
(4)有关平均分子式的计算。
(5)有关反应热的计算。
(6)有关混合物反应的计算。
Ⅵ 资料分析十字交叉法是什么
资料分析十字交叉法是根据溶液混合问题得到的,即如果有A、B两种溶液的浓度分别为a和b(此处假设a>b),则A、B混合在一起的混合溶液的浓度r肯定介于之间。
十字交叉法不仅仅在数学运算模块中能够帮助同学们快速解决浓度问题、利润问题,同样在资料分析的解题过程当中也可以有效利用。
(6)十字法则分析扩展阅读
“十字交叉法”在资料分析中的应用:
在解浓度问题的时候运用十字交叉的原理是混合溶液浓度介于原始浓度之间,那么同样在资料分析中该原理为:部分的增长量的和等于整体的增长量,则整体的增长率介于部分增长率之间,哪部分占的比重大就偏向哪个部分。
所以在资料分析中出现给出了各部分(一般是两部分)现期的值以及增长率,求解整体的增长率。我们可以利用十字交叉法中计算出相应结果。
Ⅶ 什么是十字分解法(最好用文字说明)
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m
Ⅷ 请给我讲解一下十字分解法,并举例说明
是十字相乘法吧...
分解完的式子是(未知数+*1)(未知数+*2)
一般分解的式子都是ax平方+bx+c(这里a,b,c均为常数,且a不等于0).
这里的*1和*2是两个常数.
首先,在草稿本上画一个大叉.
叉的左边写未知数(未知数可以有系数),右边写常数,也就是*1和*2.
左边未知数的乘积要等于ax.
你分解出来的*1与*2,他们相乘要等于c(*1,*2可以为负数)
而他们与叉左边对应的数(即一条直线所指的数的数)的乘积的和,要等于bx.
这样,叉的左上的数与右上的数的和,再乘左下的数与右下的数的和.这样就分解好了.
例:
1.x平方+4x-5
5可以分解为-1与5
则-1与x的积+5与x的积正好等于4x.
则原式=(x-1)(x+5)
2.2x平方-4x-6
-6可以分解为-3和2.
2x平方可以分解为2x与x.
则(-3乘2x)+(2乘x)=-4x.
所以,原式=(2x+2)(x-3)
十字相乘法是没有什么诀窍可寻的,想做好这类题目,最主要还是多做题目,培养数感.这样慢慢的做这类题目就会变的很轻松.要想一步登天是不可能的.如果不懂,请看下图.
以上纯手打,鄙视底下的复制的,搞那么的LZ能看懂么.......
Ⅸ 十字交叉法的例题详解
十字交叉法的本质就是解二元一次方程的简便形式,该类题目也可以列方程解,使用该法则的具体方法如下:像A的密度为10,B的密度为8,它们的混合物密度为9,你就可以把9放在中间,把10和8写在左边,标上AB,然后分别减去9,可得右边分别为1和1。此时之比就为1:1 。
(一)混合气体计算【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混合,测得混合气体对氢气的相对密度为12倍,求这种烃所占的体积。【分析】根据相对密度计算可得混合气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是1/2体积
(二)原子含量计算【例题】溴有两种核素,在自然界中这两种核素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。(A)79 、81 (B)45 、46 (C)44 、45 (D)44 、46【分析】两种同位素大约各占一半,根据十字交叉法可知,两种同位素原子量与溴原子量的差值相等,那么它们的中子数应相差2,所以答案为D设两个中子数分别为X和Y,因为各占一半,所以后面是1:1X 180-35=45Y 145+1=46,45-1=44
(三)溶液配制计算【例题】某同学欲配制40%的NaOH溶液100克,实验室中现有10%的NaOH溶液和NaOH固体,问此同学应各取上述物质多少克?【分析】10%NaOH溶液溶质为10,NaOH固体溶质为100,40%NaOH溶液溶质为40,利用十字交叉法得:需10%NaOH溶液为2╱3×100=66.7克,需NaOH固体为 1╱3×100=33.3克
(四)混合物反应计算【例题】现有100克碳酸锂和碳酸钡的混合物,它们和一定浓度的盐酸反应时所消耗盐酸跟100克碳酸钙和该浓度盐酸反应时消耗盐酸量相同。计算混合物中碳酸锂和碳酸钡的物质的量之比。【分析】可将碳酸钙的式量理解为碳酸锂和碳酸钡的混合物的平均式量,利用十字交叉法计算可得碳酸锂和碳酸钡的物质的量之比97:26
(五)数学统计【例题1】(2007年国家公务员考试题)某高校2006年度毕业学生7650名,比上年度增长2% 。其中本科毕业生比上年度减少2%。而研究生毕业生数量比上年度增加10 %,那么这所高校今年毕业的本科生有多少人?【分析】根据题意,可以得出上一个年度的学生情况!以下均省略百分号!本科98 /8总和 102硕士 110/ 4所以,本科和硕士的比例是2:1.那么根据题意,上一年度的毕业生有7650÷1.02=7500而本科:硕士=2:1所以上一年度有本科7500*2/3=5000本年度本科生减少了2%,所以就有5000×98%=4900。【例题2】某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?( )A. 0.5 B. 1 C. 1.5 D. 2十字交叉法:故答案为:C
Ⅹ 十字交叉法的数学原理及实际应用
十字交叉法专题十字交叉法可适用于解两种整体的混合的相关试题,基本原理如下:
混合前
整体一,数量x,指标量a
整体二,数量y,指标量b(a>b)
混合后
整体,数量(x+y),指标量c
可得到如下关系式:
x×a+y×b=(x+y)c
推出:
x×(a-c)=y×(c-b)
得到公式:
(a-c):(c-b)=y:x
则任意知道x、y、a、b、c中的四个,可以求出未知量。不过,求c的话,直接计算更为简单。当知道x+y时,x或y任意知道一个也可采用此法;知道x:y也可以。
应用:混合气体计算
【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混合,测得混合气体对氢气的相对密度为12倍,求这种烃所占的体积。
【分析】根据相对密度计算可得混合气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是1/2体积
同一物质的溶液,配制前后溶质的质量相等,利用这一原理可列式求解。
设甲、乙两溶液各取m1、m2克,两溶液混合后的溶液质量是(m1+m2)。列式
m1a%+m2b%=(m1+m2)c%把此式整理得:m1:m2=(c-b)/(a-c),m1:m2就是所取甲、乙两溶液的质量比。
为了便于记忆和运算,若用C浓代替a,C稀代替b,C混代替C,m浓代替m1,m
稀代替m2,把上式写成十字交叉法的一般形式,m浓m稀就是所求的甲、乙两溶液的质量比。
这种运算方法,叫十字交叉法。在运用十字交叉法进行计算时要注意,斜找差数,横看结果。
(10)十字法则分析扩展阅读:
十字交叉法常用于求算:
(1)有关质量分数的计算;
(2)有关平均相对分子质量的计算;
(3)有关平均相对原子质量的计算;
(4)有关平均分子式的计算;
(5)有关反应热的计算;
(6)有关混合物反应的计算。
十字交叉法的本质就是解二元一次方程的简便形式,该类题目也可以列方程解,使用该法则的具体方法如下:像A的密度为10,B的密度为8,它们的混合物密度为9,你就可以把9放在中间,把10和8写在左边,标上AB,然后分别减去9,可得右边分别为1和1。此时之比就为1:1 。