A. 程民德的成就及荣誉
在担任繁忙的行政工作的同时,程民德一直抓紧时间,开展教学与科学研究工作。他除教授基础课之外,先后于1956年、1959年、1962年在北京大学开设调和分析专门化课,自编讲义。张恭庆、陈天权、陈子岐、龙瑞麟、黄少云等都是从这里开始学习调和分析的。他讲课从不看讲稿,有时为了证明一个大定理,可以一口气讲上两个小时。这种深厚的经典分析功力深深地影响了学生。他在继续研究多元调和分析的同时,从1954年开始,和他的学生陈永和合作,在我国开创了多元三角逼近的研究方向。
“文化大革命”开始,程民德受到严重冲击,接着而来的是长达7年之久的隔离审查。他在江西干校整整度过了两年的劳动生涯。在此期间,他始终对党对社会主义事业充满信心。一旦条件允许,他便开始恢复科学研究。1973年,根据当时的实际情况,他从研究沃尔什(Walsh)变换及其在图像频带压缩中的应用开始,组织了跨学科的讨论班,从事信息处理的研究。他是我国开展模式识别与图像处理研究的先驱与倡导者之一。
1976年“四人帮”垮台后,程民德在政治上得到了彻底的解放。1978年他担任北京大学数学研究所第一任所长,1980年当选为中国科学院学部委员,1982年至1986年担任北京市数学会理事长,1983年至1988年担任中国数学会副理事长。在此期间,他为北京大学数学系、数学研究所以及全国的数学的发展,作了一系列的组织工作,成绩斐然。他曾是国家教委应用数学领导小组的负责人之一,国务院学位委员会数学评审组成员,全国教材编审委员会副主任,《中国科学》与《科学通报》编委,国家基金委数学天元基金学术领导小组组长。现仍为《现代数学基础丛书》主编,《北京大学数学丛书》主编,《数学年刊》与《应用数学学报》副主编。 傅里叶级数的第一个最基本的问题是,函数f(x)满足什么条件,其傅里叶级数在x0便收敛到f(x0)。1872年P.D.G.杜布瓦-雷蒙( Bois-Reymond)构造了一个反例,表明函数在x0连续不能保证傅里叶级数在x。收敛。于是人们采用一种新的收敛概念——求和法。最简单的求和法是(C,1)求和,即考虑级数前n项部分和的算术平均当n→∞时的极限。1900年L.费耶尔(Fejér)证明,函数只要在x0连续,其傅里叶级数在x0便(C,1)可求和到f(x0)。可见,求和的概念比收敛的概念更适合于傅里叶级数理论。程民德早年的工作,就是研究单元傅里叶级数各种求和法以及求和因子等问题的。
傅里叶级数理论的另一个问题是唯一性问题。此问题的提法是,如果一个三角级数收敛(或可求和)到一个可积函数,能否断言此三角级数必是该函数的傅里叶级数?或狭义一些,如果一个三角级数收敛(或可求和)到0,能否断言此三角级数的系数皆为0?对于一元三角级数唯一性的研究,G.F.B.黎曼(Riemann)与G.康托尔(Cantor)取得了伟大的成果,促使了点集论的产生。
直到本世纪40年代,包括上述基本问题的调和分析理论,也只是对一元函数来说比较完整。多元调和分析由于有原则上的困难,一直未有本质上的突破。在30-40年代中,由于偏微分方程等研究的需要,调和分析家一直在探求这方面的进展。在40年代后期,程民德适应这种潮流,研究方向从一元调和分析转到多元,从多重三角级数唯一性理论开始,获得了重要的成果。
为了证明多重三角级数的唯一性定理,程民德发展了一个有独立意义的领域,就是重调和函数的研究。人们知道,调和函数是满足拉普拉斯(Laplace)方程△u=0的二次连续可微函数。m重调和函数就是2m次连续可微函数,满足方程△mu=0。问题是当只知道u仅有较少的光滑性时(例如只知有2m-2次连续可微),怎样来刻划u的m重调和性。这个问题,德国的W.J.E.布拉施克(Blaschke)于1916年解决了m=1的情形。30年代,D.尼科列斯库(Nicolesco)对一般的m作出了类似的刻划。程民德在研究多重三角级数唯一性时,发现他给出的条件只是必要而不是充分的。他于1950年引进了广义多重拉普拉斯运算(记为?m)的概念,并且在u是2m-2次连续可微的条件下证明了,△mu=0当且仅当?mu=0。
50年代以来,多元调和分析取得了很大的进展,其中的一个课题,就是对分数次积分的研究。多元函数在整个n维欧氏空间的分数次积分,是由M.里斯(Riesz)于1949年引进的,这就是里斯位势。对于周期函数或有限区域,并没有明显的类似,程民德与陈永和通过多重傅里叶级数的博赫纳(Bochner)-里斯平均,对于周期函数定义了分数次积分与分数次拉普拉斯运算,详尽地研究了它们的性质以及与索波列夫(Coболев)空间的关系。由于嵌入定理的需要,在50年代,苏联、美国等有不少人研究周期函数与定义在有限区域上的函数的分数次积分。在这些工作中,程民德与陈永和于1957年及1959年发表在北京大学学报并于1956年在波兰科学院摘要刊载的结果是最早的。
国际上多元调和分析的突破性进展公认是A.P.考尔德伦(Calderón)与A.赞格蒙(Zygmund)1952年关于奇异积分算子的奠基性工作。以后的蓬勃发展形成了整个的多元调和分析理论。程民德早在50年代便注意到了这个进展,并于1962年在北京大学组织讨论班学习奇异积分算子理论。“文化大革命”后,他又很快恢复了多元调和分析的研究工作,并组译了E.施坦(Stein)的《奇异积分与函数的可微性》,并亲自给研究生上课。他在这方面已培养了4名博士,近20名硕士。他所领导的科研集体,已活跃于多元调和分析的国际前沿。他们在哈代(Hardy)空间、贝索夫空间、奇异积分算子、汉克尔(Hankel)算子等方面作出了优秀的成果,受到了国际同行的高度评价。他和他的学生已把他们给研究生上课的讲义整理成《实分析》一书出版。 函数逼近论是本世纪初发展起来的一个数学分支,其基本思想是用简单的、性质好的函数(例如多项式或三角多项式)去逼近复杂的、性质差一些的函数,这在理论上与实际应用方面都是很有意义的。50年代以前,逼近论大都是研究一元函数的逼近问题。多元函数的逼近,只是从50年代以来才取得较大的进展。逼近多元周期函数,最常见的一种方法是用其傅里叶级数圆形和的一种求和法——δ阶博赫纳-里斯平均
这种求和法,δ愈大,性能愈好。δ有一个临界指标δ0=1/2,它是刻划这种求和法的一个分界数。1947年两位印度数学家证明了对较大的δ(δ>δ0十a),用SδR去逼近α阶的李普希茨(Lipschitz)函数,可以达到理想的逼近程度,但这结果显然是不精确的。1956年程民德在我国最早研究多元三角逼近理论。他同陈永和合作彻底解决了临界阶以上(δ>δ0)博赫纳-里斯平均的逼近问题。他们证明了只要δ>δ0,就可以达到理想的逼近程度。他们还把周期函数的分数次积分概念与多元三角逼近理论联系起来,得到了丰富的结果。这些结果,不仅以其系统完整而载入专著,而且对多元三角逼近理论产生了很大影响。直到80年代,在程民德工作的基础上,对等于或小于临界阶的博赫纳-里斯平均的研究,仍是很活跃的课题。在我国,已有一批数学工作者在这个方向上继续工作。另外,由于傅里叶级数与数学物理密切相关,程民德等的研究结果已被郭本瑜等用于偏微分方程的数值分析。 从1973年开始,程民德从高维沃尔什变换入手,开始研究模式识别与图像处理。沃尔什变换是类似于傅里叶展开的另一种正交展开,在许多情形下,它比傅里叶变换更适合于对数字无线电信号的分析。70年代,二维沃尔什变换在电视频带压缩上的应用,在计算机模拟与实验室试验方面取得了成功。但在理论上,即使是一维的情形,还缺乏系统而完整的工作。程民德于1978年统一地对高维沃尔什变换进行了系统而完整的分析,证明了收敛定理、取样定理,论证了沃尔什变换对数字图像频带压缩有优越性。他和他的学生合作,完成了中国第一本有关模式识别方面的专著《图像识别导论》。
由于计算机的应用,模式识别与图像处理的研究,国际上在60-70年代发展已极其迅速,在我国则起步较晚。程民德不仅从事理论研究,还进一步建立了北京大学数学系的信息数学专业,带领大家研究指纹识别、地理信息库以及视觉模拟。他和石青云以及他们的研究生,在指纹识别方面有重要的发现,从而开发了新一代高功能的指纹自动鉴定实用系统,此系统1990年进入了国际市场,为我国经济发展作出了贡献。在程民德带领的科研集体的基础上,北京大学先后成立了跨学科的“信息科学中心”以及“视觉和听觉信息处理”国家重点实验室,程民德担任了这个中心和实验室的学术委员会主任。
程民德在学术思想上,坚持数学理论与联系实际并重的方针。他十分重视数学理论的独立发展,认为不能要求所有的数学研究都必须有实用背景,但也应十分重视数学的应用。当80年代有个别人怀疑搞数学的人是否应去搞模式识别的时候,他坚持了模式识别的研究方向。正是在他的正确思想指导下,北京大学数学系信息科学专业与北京大学信息中心才能取得了重大的发展。 1952年,院系调整后的北京大学数学力学系,面临一个大发展的局面,学生从几十人很快增至上千人,专业由单一的数学专业,增加了力学专业与计算数学专业,但师资缺乏,不能适应发展的要求,教学又面临改革的任务。程民德作为教研室与系的主要负责人之一,从加强基础课教学着手,努力做好各个专业的建设。他自己亲自讲授有200多名学生的数学分析大课,以极其严谨的分析风格培养学生,从而在新建的北京大学数学力学系确定了重视基础训练的优良传统。在教学质量逐步走向稳定的时候,1955年他又会同林建祥、丁石孙等青年教师,及时提出在高等学校积极开展科学研究的建议。另外,当时的北京大学数学力学系,是由原来北京大学、清华大学、燕京大学三校的数学系合并起来的,教师来自不同的单位。程民德与当时的系主任段学复等一起,在党组织的领导下,得到江泽涵、徐献瑜等教授的支持,充分发挥原三校教师的作用,信任青年教师并加强对他们的培养,注意树立团结和睦的风气以及活跃而又严谨的学风,使新建系形成了优良的风尚。这种风尚在北京大学数学系后来的发展中起了极其重要的作用。
“文化大革命”后,经历了十年浩劫的北京大学数学系与中国数学界,又面临一个恢复与重新发展的局面。程民德积极支持思想上的拨乱反正。他在北京大学数学系中,巩固并发展了应用数学专业与信息科学专业,签订了许多重大的科研项目的协议。北京大学数学研究所成立后,他担任第一任所长,在所里创立了良好的研究环境与自由讨论的良好风气。他采取了多种措施,扶植了大批中青年人迅速成长。在全国,1977年他首先在北京大学恢复了多元调和分析的理论研究。接着,于1978年,在他的积极倡议之下,函数论作为一门理论学科,在全国最早恢复了学术活动。他克服了重重困难,于1980年成功地协助吴文俊教授组织了由国际著名数学家陈省身先生倡导的第一届微分方程与微分几何国际学术会议,为中国数学的国际交流树立了高标准的楷模,对提高我国数学水平产生了深远的影响。以后他又主持了1984年的分析学国际学术讨论会,组织了1985年的国际逼近论会议,主持了1988年的南开大学数学研究所的调和分析学术活动。他为中国数学会重返世界数学联盟作了许多实际工作。他努力支持南开大学数学研究所的成立和它的各项活动,并参加领导了由陈省身先生向国家教育委员会倡议的全国数学研究生暑期教学中心,为提高全国数学研究生的近代数学水平提供良好的条件。他还为中美合作培养研究生作出了很大的贡献。1985年程民德与徐利治合作,创办了国际性英文版数学杂志《逼近论及其应用》(ApproximationTheory and its Applications)并担任主编。
“文化大革命”结束后,中国数学界呈现一派繁荣兴旺的景象,不少中青年人脱颖而出,在国内外做出了很优秀的工作。这时,陈省身先生提出,在21世纪初中国数学可以率先赶上世界先进水平并于21世纪把中国建成数学大国。为了达到这个目标,程民德等在国家科委、国家基金委和国家教委的支持下,于1988年在南开大学召开了第一届“21世纪中国数学展望”学术讨论会。参加会议的国内有122人,国外的有45人,其中大量是正在攻读或已取得博士学位的青年人。会议在程民德、胡国定、吴文俊等人的主持下,共商发展中国数学的大计。会议为中国数学的发展争取到财政部专款拨给国家基金委的一笔基金——数学天元基金。以程民德为首的天元基金学术领导小组,决定用它支持一批重点项目,特别是支持年轻人,为他们的发展创造条件。同时决定给予影印数学书刊和翻译出版数学图书资料等方面的支持,尽可能改善一些全国的数学研究条件。1990年“第2届21世纪中国数学展望会”又在南开大学召开,大家决心通过扎实的工作,实现数学率先赶上世界先进水平的目标。会议呈现出一派团结奋斗的新景象。
青年时代的程民德,沉静、寡言、不善辞令。在美国留学时参加的一个晚会上,他的导师博赫纳就曾以“寡言的数学家”把他介绍给大家。回国后,是历史的潮流把他冲上了行政的领导岗位。由于历史的原因,中国数学自然划分为南方与北方两个活动中心。程民德青年时代在南方学习与工作,以后又长期在北方任教,在美国留学时又接触了许多国际知名的数学家。这在客观上为他提供了工作上的有利条件。但更重要的是他从不把个人的得失放在第一位,始终以大局为重。他待人宽厚,总为别人设想,严于律己。他意志坚强,不管遇到任何困难,总是要求自己扎扎实实甚至默默无闻地去工作,直至达到目的为止。他待人真诚,从不说违心的话,因此他能团结人,发挥每一个人的作用。在学术上,他不保守,总是鼓励年轻人去开创,甚至鼓励年轻人超过自己。这一切,正是他能为中国数学发展做出贡献并获得人们信任、尊敬的原因。
B. 陶轩哲的简介 以及他的主要贡献
Terence Tao(陶哲轩),在ICM 2002上做过一小时报告, 2006年Fields Medal的热门人选,2003年的Clay奖得主。是IMO(国际数学奥林匹克)历史上最年轻的金牌选手(1988年,13岁)。学调和分析和PDE的可以到Tao的Home Page(http://www.math.ucla.e/~tao/)上去看看他的List of Publications——真是惊人的多产。他的中文名字是陶哲轩,虽然他一句中文都不会讲。下面的短文转自UCLA(加州大学洛杉矶分校)的主页,见 http://www.ucla.e/spotlight/archive/html_2000_2001/fac0900_tao.html 从香港移民到澳大利亚。生于1975年,8岁上高中。连续参加了三届IMO。 1986年,在华沙,11岁的Tao就获得了铜牌; 1987年,在哈瓦那,他获得银牌; 1988年,堪培拉,他终获金牌。关于这一点,见http://www.amt.canberra.e.au/olympian.html 1992年17岁的Tao在Flinders University取得学士学位,并且是First ClassHons。其后获Fulbright Postgraate Student Award,去Princeton University,他的导师是Wolf奖获得者E. M. Stein。 Stein说过Tao是百年难遇的奇才(在杭州ICM 2002"调和分析及其应用"卫星会议上听同行们讲的,未经证实)。 20岁,获得博士学位,UCLA(加州大学洛杉矶分校)助教。 24岁, UCLA full professor(正教授). BTW: Tao的大师兄Charles Fefferman是更加了不起的人物: 20岁在Princeton获Ph.D, 22岁在University of Chicago成为美国历史上最年轻的Full Professor, 29岁获Fields Medal。 参考: http://upcxin.bokee.com/blog/1252769.html wiki: 陶哲轩陶哲轩(Terence Tao,小名Terry,1975年7月17日生于澳大利亚阿德莱德),是中国裔数学家,主要研究调和分析、偏微分方程、组合数学、分析数论和表示论。从1992年至1996年,他是普林斯顿大学研究生,指导教授是埃利亚斯·施泰因(Elias Stein)。他现在为加洲大学洛杉矶分校的终身数学教授,并与妻子劳拉(Laura)和儿子威廉(William)在洛杉矶居住。 研究和奖项 在1986年、1987年和1988年,陶哲轩是国际数学奥林匹克最年轻的参赛者,依次赢得铜牌、银牌和金牌。他未到13岁已赢得金牌,这纪录还没有人打平。 他在2000年获颁塞勒姆奖(Salem),2002获颁博谢纪念奖(Bôcher),和在2003年获颁克雷研究奖,以表扬他对分析学的贡献,当中包括挂谷猜想和wave map。在2005年,他获得利瓦伊·L·科南特奖(Levi L. Conant)(获奖者还有艾伦·克努森(Allen Knutson))。 在2004年,本·格林(Ben Green)和陶哲轩发表一篇论文预印稿,宣称证明存在任意长的素数等差数列。
尽管享有“数学神童”之称,尽管11岁至13岁时各获国际奥林匹克数学竞赛铜、银和金牌,尽管21岁就获普林斯顿大学博士学位、24岁即为加州大学教授,尽管2000年曾获塞勒姆奖、2003年获克雷基金会奖,但在得知自己获菲尔茨奖后,陶哲轩甚至不敢相信———“这个奖对我来说是莫大的荣誉”。
前天国际数学家大会上的菲尔茨奖得主陶哲轩,两岁时已成了教小朋友们数数的老师。
这位当之无愧的“数学神童”,这位刚满31周岁的华裔数学家,是今年问鼎这项“数学诺贝尔奖”的四人中的最年轻、也是继24年前丘成桐后获此殊荣的第二位华人。
前天,西班牙首都马德里。四年一次的国际数学家大会在此召开。在来自120多个国家和地区的近4000名数学家的注目下,一位儒雅清秀的年轻华人,从国际数学联盟主席约翰·鲍尔手中,接过菲尔茨奖———这个全球数学界的诺贝尔奖。
他,就是年仅31岁的华裔数学家陶哲轩。
菲尔茨是个什么奖———
了不起的“数学诺贝尔”
“菲尔茨奖是‘数学诺贝尔奖’,这是一个了不起的奖项。”昨日采访中,中科院研究员、当代数学大家吴文俊说。
正面,希腊数学家阿基米德的目光深邃;背面,镌刻“全世界的数学家们,为知识作出新的贡献而自豪。”就是这枚金质奖章及1500美元的奖金,构成了菲尔茨奖的全部奖品。似乎,物质价值远非缺席数学的诺贝尔奖可比;然而,这个数学大奖无论从其权威性、国际性或学术影响而言,都无愧为数学界的诺贝尔奖。
首先,它由国际数学联盟颁发,在每隔四年才召开一次的国际数学家大会上颁发。中科院院士、北大数学研究所所长张恭庆告诉记者:“这是全世界顶尖数学家的联盟。”其次,每届菲尔茨奖最多同时授予4人,从1936年首度颁奖以来,包括本届4位得主在内全球仅有49人获奖。再次,它是窥视现代数学主流面貌的很好“窗口”,著名数学家、布尔巴基学派创始人之一丢东涅1978年在论文《论纯数学的当前趋势》中,全面概述了近20年来纯数学各分支的前沿;在他列举的13个目前处于主流的数学分支中,12个的部分重要工作均由菲尔茨奖获得者完成。
正因此,今年因调和分析方面的研究成果获此殊荣的陶哲轩,尽管有“数学神童”之称,尽管年少时获奖多多,但在得知自己获菲尔茨奖后,他甚至一直都不敢相信———“这个奖对我来说是莫大的荣誉”。
菲尔茨与沃尔夫谁是“老大”———
并驾最高荣誉
数学界最高荣誉,究竟是菲尔茨奖还是沃尔夫奖?
还记得前年年底数学大师陈省身辞世后,本报曾专访其弟子吴文俊,说起陈先生获过的沃尔夫奖,也称这是“全世界数学的最高奖”。对此,中科院数学机械化研究中心主任高小山说:“菲尔茨和沃尔夫是数学界传统的两个大奖,前者是成果奖,后者是终身成就奖。”
吴文俊说:“菲尔茨奖历届都是颁给40岁以下的优秀年轻人。这么多年来只有一个例外,就是安德鲁·怀尔斯。他成功破解了一个困惑世界数学界长达3个多世纪的难题“费马大定理”,而且他证明费马大定理成立时,年龄刚刚超过40岁,所以就得到了一个菲尔茨奖颁发以来唯一的特别奖。”
与菲尔茨奖并驾齐驱的国际数学界大奖沃尔夫奖,获奖者确实都较为年长。吴文俊说:“虽然陈省身教授最著名的两篇论文都是完成于30多岁时,但他的学术成果是之后才被肯定的,所以他没拿成菲尔茨奖,拿的是沃尔夫奖。我想,恐怕诺贝尔当时设奖时还不太了解数学,所以没设数学诺贝尔奖,如果有,陈先生肯定能得。”
在数学界广为人知的,还有这样一段师徒缘:1982年首位获得菲尔茨奖的华人、毕业于香港中文大学数学系的丘成桐,他的指导教师正是这位唯一获得过沃尔夫奖的华人———陈省身。
陶哲轩的获奖理由———
完美成就多方面
吴文俊说:“陶哲轩这个人是公认了不起的。我虽然没和他见过面,但在很多座谈会上时常听到别人赞叹他,提起他多方面的成就。”
高小山说:“应该说陶哲轩这次得奖是基于他多方面的成就,并不仅仅在于他调和分析领域的研究成果,据我所知,他证明了在素数中存在任意长的等差数列,解决了一个难题。”
众所周知,如果一个自然数只有1和它本身可以整除它,那么这个数就是素数。研究素数也许并不能带来什么直接的实际利益,但作为数论中最基本的课题之一,许多数学问题都与其紧密相关,例如素有“数学皇冠上的明珠”之称的哥德巴赫猜想。素数在纯数学及其应用中都起着重要作用,对它的研究一直在众多方面推动其他学科不断向前发展。
张恭庆说:“菲尔茨奖看重的是原创思想,陶哲轩这次获奖主要是他在数论、调和分析和组合分析的研究成果。”
南大数学系博士研究生邱华则对陶哲轩将调和分析、遍历理论和数论的完美结合十分推崇。他说:“因为调和分析内容丰富,一般学生要到研究生阶段,花1到2年时间潜心学习,才能稍稍学成。从某种程度上说,它是一种数学功力的代表。”
同为南大数学系博士研究生的郭嵩,曾与导师就陶哲轩的一篇论文做过深入研究。1977年出生的他对仅年长2岁的陶哲轩佩服不已:“也许这篇文章只是他众多论文中不太起眼的一篇,但对我们来说,他完成得实在太出色了。其实,早在2002年,数学界就预测陶哲轩会获得菲尔茨奖,他的导师、沃尔夫奖获得者埃利亚斯·施泰因还曾公开称赞他是百年难遇的数学奇才,因此这次获奖完全在预料中。”
陶哲轩其人其事———
数学莫扎特
“特里(陶哲轩的英文昵称)就是数学界的莫扎特,才华横溢。”加州大学洛杉矶分校前数学系主任约翰·加内特这样评价。
陶哲轩获奖的消息,已赫然高悬于这所他所任教的大学主页上。在他年轻俊朗的脸庞后,一行大标题缓缓移出:“超级巨星陶哲轩教授,成为本校荣膺‘数学界诺贝尔奖’之第一人”。
学校物理科学院院长、数学系教授托尼·陈称赞:特里这样的天才百年难得一遇,他解决了数学领域中困扰别人多时的诸多问题;他对研究领域的跨越,好比一名优秀的心脏专家,同时在脑外科方面又卓有建树,而更令人赞叹的是,他是那样的年轻。
加内特说:特里总能将复杂的数学问题化繁为简,他称得上是当今世界最好的数学家;而且他的合作能力很强,世界上最出色的数学家都喜欢和特里一同工作,他的合作者能够组建成世界上最强大的数学系。
学校现任数学系主任克里斯托弗·希勒教授这样说:“来自美国各个州,乃至中国和罗马尼亚的优秀毕业生,都慕名前来我们学校拜陶哲轩为师。”
这位华裔数学奇才1975年7月17日出生于澳大利亚,2岁时就迷上了数字,甚至还拿着拼块教小朋友们学数数;7岁就在高中学习微积分,9岁便已达到大学微积分的水平;11岁,他在国际数学奥林匹克竞赛中赢得铜牌,小荷始露尖尖角;接下来两年,更先后获得国际奥林匹克数学竞赛银牌和金牌,并成为最年轻的金牌得奖者,此后这项纪录在澳大利亚一直无人能平。
可这些,还仅仅是他神奇的开始。接下来的履历表上,依然一片耀眼光芒:21岁,获得普林斯顿大学博士头衔;24岁,成为加州大学洛杉矶分校正教授,研究领域涉及调和分析、偏微分方程、组合数学、分析数论……
但陶哲轩却说:“我并没有任何超能力。”他把自己的成功解释为策略的胜利:“许多人面对数学问题时,总是想着直接的解决方式,但是他们获得的只是答案。而我计算一些细节之前,更喜欢研究策略,我更想知道如果我做了一些细微的改变,会发生什么?原来的方法仍然可行吗?”固执地刨根究底,执著地寻求创新,这也许就是陶哲轩的成功秘诀。
他们的梦想———
中国要成为数学大国
中国这个决定用两条腿走路的巨人正在一面发展技术创新,一面加强基础研究。中国不但已在物理、化学等研究领域显示了实力,“而且在数学领域的进步更是令人惊叹”。
这就是本届国际数学家大会开幕之际,法国媒体在《世界数学界重新发牌》中援引了法国高等科学研究院院长布吉尼翁的话:中国目前的数学家人数还不多,但这支队伍很快将会壮大,因为中国已下决心发展数学研究,国家大量增加投入,并以极其优越的工作条件从世界各地吸引回大量的优秀人才。
“奖项可以算是一种衡量进步的标尺。”高小山说,“现在的学习条件好了,中国数学总体也在进步,也逐渐有一些人获得了国际数学奖项。”张恭庆也说:“中国数学界当然在进步中,中国数学家们在重要杂志中发表的文章、在国际大会上受邀发表演讲的次数都在不断增长。”
这个时候,相信许多人都会想起“陈省身梦想”———中国要成为数学大国。吴文俊说:“我们中国数学界现在进步,有潜力,年轻的数学家越来越多,成绩也多。这个梦想一定可以实现。”
这个梦想,也一直是丘成桐的心心念念。昨日,记者在第一时间分别致电他在国内的三个数学中心及哈佛大学的办公室,很遗憾,始终无法找到他。但他不久前在华师大办讲座时说的话,至今犹言在耳。在谈及对中国基础数学研究的看法时,他说:“基础研究一定要一步一步走,不能急功近利,不能浮躁。”
巧的是,采访末了,吴文俊也说:“只要我们念念不忘,埋头苦干,脚踏实地,这个梦想就一定会水到渠成。”
曾经的“数学神童”
陈省身:1911年生于浙江嘉兴,15岁考入南开大学,21岁在《清华大学理科报告》上发表第一篇学术论文,23岁获硕士学位,25岁获德国汉堡大学博士学位,38岁起担任芝加哥大学的几何学教授,并在十年中复兴了美国的微分几何,形成美国的微分几何学派。
高斯:1777年生于德国不伦瑞克,有“数学王子”的美誉,和牛顿、阿基米德被誉为有史以来的三大数学家。15岁进入不伦瑞克学院,17岁得到了一个数学史上极重要的结果———《正十七边形尺规作图之理论与方法》。
莱布尼兹:1646出生于德国莱比锡。15岁在莱比锡大学学法律,期间对数学产生浓厚兴趣。20岁发表了第一篇数学论文。从此开始对无穷小算法的研究,独立创立微积分的基本概念与算法,和牛顿共同奠定微积分学。
拉马努金:1888年出生于印度,二十世纪国际数学界公认的数学奇才,对数论的众多领域作出了开创性贡献。32岁去世,身后留下近4000条未经证明的数学公式和定理,证明它们成为国际数学界的一个重大挑战。
C. 彭立中的介绍
彭立中,男,1944年10月生,辽宁省沈阳人。北京大学本科,硕士,瑞典斯德哥尔摩大学博士,教授(1990-),博士生导师(1993-),调和分析和小波分析专家。发表研究论文70余篇。从事《数学分析》教学18年。曾任北京大学大学数学科学学院副院长,主管教学(1995-1998),数学系系主任(1995-2003)。曾多次出国访问和参加国际学术会议。中国数学会秘书长(1999-2003)。2002年世界数学家大会组织委员会委员。获国家教委两次科技进步二等奖:1991年函数空间上的算子研究(与邓东皋合作),1997年小波,算子及应用(与蒋庆堂合作)。获得国家教委和人事部优秀留学回国人员荣誉称号(1991)。
D. 十位数学家的故事,急!!!!!!!!!!!1
楼主可以自己编辑下,筛选内容
1.刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。
刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。
刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
2. 祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
3.欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"。
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师。" 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等。
4. 我们现在所用的直角坐标系,通常叫做笛卡儿直角坐标系。是从笛卡儿 (Descartes R.,1596.3.31~1650.2.11)引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。
法国数学家拉格朗日(Lagrange J.L.,1736.1.25~1813.4.10)曾经说过:"只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是,当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力。从那以后,就以快速的步伐走向完善。"
我国数学家华罗庚(1910.11.12~1985.6.12)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!"
这些伟人的话,实际上都是对笛卡儿的贡献的评价。
笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。
笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。
笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。
笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。
笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:
有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。
在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。
笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。
5.高斯(C.F.Gauss,1777.4.30~1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。
在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。
7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。
在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。
当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。
高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。
布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。
1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。
1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”
慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。
为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。
高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。
1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。
高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。
6.毕达哥拉斯(Pythagoras,572BC?~497BC?),古希腊数学家、哲学家。
毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28,496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。
在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。
7.钱学森1911年出生在上海市,1934年毕业于上海交通大学。他为了更好地报效祖国,于1935年考取美国麻省理工学院进行深造学习,并于1936年转入加州理工学院继续学习,并拜著名的航空科学家冯·卡门为师,学习航空工程理论。钱学森学习十分努力,三年后便获得了博士学位并留校任教。在冯·卡门的指导下,钱学森对火箭技术产生了浓厚的兴趣,并在高速空气动力学和喷气推进研究领域中突飞猛进。不久,经冯·卡门的推荐,钱学森成了加州理工学院最年轻的终身教授。
从1935年到1950年的15年间,钱学森在学术上取得了巨大的成就,生活上享有丰厚的待遇,但是他始终想念着自己的祖国。
1950年朝鲜战争爆发,钱学森想回国报效祖国的愿望落空了,钱学森因为是中国人而遭到了迫害。直到1955年6月,钱学森写信给当时的全国人大常委会副委员长陈叔通同志,请求党和政府帮助他早日回到祖国的怀抱。周总理得知后非常重视此事,并指示有关人员在适当时机办理此事。经过努力,1955年10月18日,钱学森一家人终于回到阔别20年的祖国。不久,他便被任命为中国科学院力学研究所所长。
为了提高我国的国防能力,保卫我们国家的安全,1956年10月8日,我国第一个导弹研究机构――国防部第五研究院成立,钱学森被任命为第一任院长。在钱学森的指导下,经过艰苦的努力,1960年10月,我国第一枚国产导弹终于制造成功。
E. 谁是华罗庚
华罗庚同志是当代自学成才的科学巨匠,是萤声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守函数论与多复变函数论等很多方面研究的创始人与开拓者。
1910年11月12日出生于江苏省金坛县一个小商人家庭,父亲华瑞栋,开一爿小杂货铺,母亲是一位贤惠的家庭妇女。他12岁从县城仁劬小学毕业后,进入金坛县立初级中学学习。1925年初中毕业后,因家境贫寒,无力进入高中学习,只好到黄炎培在上海创办的中华职业学校学习会计。不到一年,由于生活费用昂贵,被迫中途辍学,回到金坛帮助父亲料理杂货铺。
在单调的站柜台生活中,他开始自学数学。1927年秋,和吴筱元结婚。1929年,华罗庚受雇为金坛中学庶务员,并开始在上海《科学》等杂志上发表论文。1929年冬天,他得了严重的伤寒症,经过近半年的治理,病虽好了,但左腿的关节却受到严重损害,落下了终身残疾,走路要借助手杖。
1930年春,他的论文《苏家驹之代数的五次方程式解法不能成立的理由》在上海《科学》杂志上发表。当时在清华大学数学系任主任的熊庆来教授看到后,即多方打听并推荐他到清华大学数学系当图书馆助理员。1931年秋冬之交,华罗庚进了清华园。
华罗庚在清华大学一面工作一面学习。他用了两年的时间走完了一般人需要八年才能走完的道路,1933年被破格提升为助教,1935 年成为讲师。1936年,他经清华大学推荐,派往英国剑桥大学留学。他在剑桥的两年中,把全部精力用于研究数学理论中的难题,不愿为申请学位浪费时间。他的研究成果引起了国际数学界的注意。1938年回国,受聘为西南联合大学教授。从1939年到1941年,他在极端困难的条件下,写了20多篇论文,完成了他的第一部数学专著《堆垒数素论》。在闻一多先生的影响下,他还积极参加到当时如火如荼的抗日民主爱国运动之中。《堆垒数素论》后来成为数学经典名著,1947年在苏联出版俄文版,又先后在各国被翻译出版了德文、英文、匈牙利和中文版。
1946年2月至5月,他应邀赴苏联访问。 1946年,国民党发动内战,昆明城内恐怖万分,他于6月离开昆明赴上海, 9月和李政道,朱光亚等离开上海前往美国,先在普林斯顿高等研究所担任访问教授,后又被伊利诺大学聘为终身教授。
1949年新中国成立,华罗庚感到无比兴奋,决心偕家人回国。他们一家五人乘船离开美国,1950年2月到达香港。他在香港发表了一封致留美学生的公开信,信中充满了爱国激情,鼓励海外学子回来为新中国服务。3月11日新华社播发了这封信。1950年3月16日,华罗庚和夫人、孩子乘火车抵达北京。
华罗庚回到了清华园,担任清华大学数学系主任。接着,他受中国科学院院长郭沫若的邀请开始筹建数学研究所。1952年7月,数学所成立,他担任所长。他潜心为新中国培养数学人才,王元、陆启铿、龚升、陈景润、万哲先等在他的培养下成为著名的数学家。
回国后短短的几年中,他在数学领域里的研究硕果累累。他写成的论文《典型域上的多元复变函数论》于1957年1月获国家发明一等奖,并先后出版了中、俄、英文版专著;1957年出版《数论导引》; 1959年莱比锡首先用德文出版了《指数和的估计及其在数论中的应用》,又先后出版了俄文版和中文版;1963年他和他的学生万哲先合写的《典型群》一书出版。他为培养青少年学习数学的热情,在北京发起组织了中学生数学竞赛活动,从出题、监考、阅卷,都亲自参加,并多次到外地去推广这一活动。他还写了一系列数学通俗读物,在青少年中影响极大。他主张在科学研究中要培养学术空气,开展学术讨论。他发起创建了我国计算机技术研究所,也是我国最早主张研制电子计算机的科学家之一。
华罗庚以高度的爱国热情参加新中国的各项社会活动。 1953年,他参加中国科学家代表团赴苏联访问。他作为中国数学家代表,出席了在匈牙利召开的二战后首次世界数学家代表大会。他还出席了亚太和平会议、世界和平理事会。 1958年他和郭沫若一起率中国代表团出席在新德里召开的“在科学、技术和工程问题上协调”的会议。
1958年,华罗庚被任命为中国科技大学副校长兼应用数学系主任。在继续从事数学理论研究的同时,他努力尝试寻找一条数学和工农业实践相结合的道路。经过一段实践,他发现数学中的统筹法和优选法是在工农业生产中能够比较普遍应用的方法,可以提高工作效率,改变工作管理面貌。于是,他一面在科技大学讲课,一面带领学生到工农业实践中去推广优选法、统筹法。1964年初,他给毛主席写信,表达要走与工农相结合道路的决心。同年3月18日,毛主席亲笔回函:“诗和信已经收读。壮志凌云,可喜可贺。”他写成了《统筹方法平话及补充》、《优选法平话及其补充》,亲自带领中国科技大学师生到一些企业工厂推广和应用“双法”,为工农业生产服务。“夏去江汉斗酷暑,冬往松辽傲冰霜”。这就是他当时的生活写照。1965年毛主席再次写信给他,祝贺和勉励他“奋发有为,不为个人而为人民服务”。
“文革”开始后,正在外地推广“双法”的华罗庚被急电召回北京写检查,接受批判。周恩来总理得知这一情况后指示:“统筹方法还是要搞的。”1970年4月,国务院根据周总理的指示,邀请了七个工业部的负责人听华罗庚讲优选法、统筹法。这之后,他凭个人的声誉,到各地借调了得力的人员组建“推广优选法、统筹法小分队”,亲自带领小分队到全国各地去推广“双法”,为工农业生产服务。小分队共去过26个省、自治区和直辖市,所到之处,都掀起了科学实验与实践的群众性活动,取得了很大的经济效益和社会效益。他的工作受到胡耀邦、叶剑英等同志的关心和支持。
1975年他在大兴安岭推广“双法”时,因积劳成疾,第一次患心肌梗塞。
粉碎“四人帮”后,他被任命为中国科学院副院长。他多年的研究成果《从单位圆谈起》、《数论在近似分析中的应用》(与王元合作)、《优选学》等专著也相继正式出版了。 1979年5月,他在和世界隔绝了10多年以后,到西欧作了七个月的访问,以“下棋找高手,弄斧到班门”的心愿,把自己的数学研究成果介绍给国际同行。
[1956年沉思在数学王国的华罗庚,他的专著《典型域上的多元复变函数论》获得国家自然科学一等浆。]
1982年11月,他第二次患心肌梗塞症。
1983年10月,他应美国加州理工学院邀请,赴美作为期一年的讲学活动。在美期间,他赴意大利里亚利特市出席第三世界科学院成立大会,并被选为院士;1984年4月,他在华盛顿出席了美国科学院授予他外籍院士的仪式,他是第一位获此殊荣的中国人。1985年4月,他在全国政协六届三次会议上,被选为全国政协副主席。
华罗庚担任的社会工作很多。他是第一至第六届全国人大常委会委员;他于1952年9月加入民盟,1979年当选为民盟中央副主席。他1958年就提出了加入中国共产党的请求,1979年6月被批准加入中国共产党,在答邓颖超同志的勉励时他表示:“横刀哪顾头颅白,跃进紧傍青壮人,不负党员名。”
1985年6月3日,他应日本亚洲文化交流协会邀请赴日本访问。6月12日下午4时,他在东京大学数理学部讲演厅向日本数学界作讲演,讲题是《理论数学及其应用》。下午5时15分讲演结束,他在接受献花的那一刹那,身体突然往后一仰,倒在讲坛上,晚10时9分宣布他因患急性心肌梗塞逝世。
华罗庚一生在数学上的成就是巨大的,他的数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等很多领域都作出了卓越的贡献。他之所以有这样大的成就,主要在于他有一颗赤诚的爱国报国之心和坚忍不拔的创新精神。正因为如此,他才能够毅然放弃美国终身教授的优厚待遇,迎接祖国的黎明;他才能够顶住非议和打击,奋发有为,不为个人而为人民服务,成为蜚声中外的杰出科学家。
中国优选法统筹法与经济数学研究会
华罗庚同志是伟大的数学家中国共产党优秀党员、中国民主同盟卓越领导人、杰出的科学家、教育家和社会活动家、中国人民政治协商会议全国委员会副主席、中国科学院主席团委员及学部委员、中国科学技术协会副主席华罗庚同志,因心脏病突发,抢救无效,于一九八五年六月十二日晚在日本东京不幸逝世,终年七十四岁。华罗庚同志的逝世是我们党和人民在科学技术事业上的一个重大损失。全国人民为失去一位伟大的科学家而万分悲痛。
华罗庚同志1910年11月12日出生于江苏省金坛县一个城市贫民的家庭。一九二四年他从金坛县立中学初中毕业,入上海中华职业学校学习,因家庭贫困,一年后离开了学校,在父亲经营的小杂货铺当学徒。在此期间,他利用业余时间自学数学。一九二九年,他在金坛中学任庶务会计,开始在上海《科学》杂志发表论文。他的论文《苏家驹之代数五次方程式解法不能成立的理由》受到清华大学数学系主任熊庆来教授的重视。经熊教授推荐,他一九三一年到清华大学工作。他只用了八年的时间,从管理员、助教、讲师进而到英国剑桥大学研究深造,一九三八年受聘任昆明西南联大教授。在极为艰苦的生活条件下,他白天教学,晚上在菜油灯下孜孜不倦地从事研究工作,写下了名著《堆垒素论》。但在国民党统治下,这一名著无法出版,只好送到国外出版,直到解放以后才以中文版在我国正式发行。一九四六年秋,迫于白色恐怖,他出走美国,先后任普林斯顿高等研究院研究员、伊利诺大学终身教授。195O年,华罗庚同志响应祖国召唤,毅然从美国回到北京,先后任清华大学教授,中国科学院数学研究所所长,中国数学会理事长,中国科学院数理化学部委员、学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长,中国优选法统筹法与经济数学研究会会长等职。他把自己的毕生精力,投入到发展祖国的科学事业、特别是数学研究事业之中。
华罗庚同志是当代自学成才的科学巨匠,是萤声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守函数论与多复变函数论等很多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变数函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于一九五七年荣获我国科学一等奖。他的研究成果被国际数学界命名为“华氏定理”、“布劳威尔--加当--华定理”、“华--王(元)方法”。华罗庚同志一生为我们留下了二百篇学术论文,十部专著,其中八部为国外翻译出版,有些已列入本世纪数学经典著作之列。他还写了十余部科普作品。由于他在科学研究上的卓越成就,先后被选为美国科学院外籍院士,第三世界科学院院士,法国南锡大学、美国伊利诺大学、香港中文大学荣誉博士,联邦德国巴伐利亚科学院院士。他的名字已载人国际著名科学家的史册。华罗庚同志是中国科学界的骄傲,是中华民族的骄傲,是十亿中国人民的骄傲。
华罗庚同志也是我国最早把数学理论研究和生产实践紧密结合作出巨大贡献的科学家。从五十年代末期开始,他就走出书斋和课堂,来到广阔的工农业生产实践之中。他把数学方法创造性地应用于国民经济领域,筛选出了以改进生产工艺和提高质量为内容的“优选法”和处理生产组织与管理问题为内容的“统筹法”(简称“双法”),并用深入浅出的语言写出了《优选法乎话及其补充》和《统筹法平话及补充》两本科普读物。二十多年来,华罗庚同志为推广“双法”,足迹遍及全国二十六个省、市、自治区。他组织和领导了广大工人、农民、战士和工程技术人员参加推广“双法”,使“双法”得到大面积普及和推广,以至运用到国家重点建设项目的研究,不仅为节约能源,增加产量,降低消耗,缩短工期取得了显著的经济效益,而且培养了一支为国民经济服务的科技队伍。毛泽东同志对华罗庚同志在科学上的这一创新曾给予高度评价,一九六四年和一九六五年两次写信给华罗庚同志,”祝贺和勉励他“壮志凌云,可喜可贺”,“奋发有为,不为个人而为人民服务。”十年动乱期间,当华罗庚同志受到林彪、江青反革命集团迫害时,周恩来同志以大无畏的精神挺身而出,保护华罗庚同志,支持他继续从事“双法”的研究和推广工作。胡耀邦同志一九八二年给华罗庚同志写信,充分肯定他把数学理论应用于生产实践,号召“更多的同志投身到新技术、新工艺攻关的行列中去,从而把我国的四个现代化建设推向前进”,共同建造中国的“通天塔”。
华罗庚同志是一位经历过新旧两个不同时代,从爱国主义者转变为共产主义战士的我国知识分子的优秀代表。早年,他曾参加中国共产党领导的抗日民主爱国运动,是李公朴、闻一多烈士的挚友。一九四六年春,他应邀赴苏联访问,写下了《访苏三月记》,表达了他对社会主义的向往。新中国的诞生,更加激发了他的爱国热忱。他看到“祖国已黎明”,放弃在美国终身教授的优厚待遇,冲破重重封锁,回到祖国的怀抱。在横渡太平洋的航船上,他致信留美同学:“为了抉择真理,我们应当回去;为了国家民族,我们应当回去;为了为人民服务,我们也应当回去……为我们伟大祖国的建设和发展而奋斗!”他爱国不怕险,纯真赤子心,受到广大人民群众和一切爱国知识分子的称颂。华罗庚同志在长期的科学研究工作中,特别是在把科学研究与生产实践相结合的过程中,努力学习马列主义、毛泽东思想,提高思想政治觉悟,强烈要求加人中国共产党,为共产主义事业奋斗。十年动乱期间,他虽然身处逆境,但也未动摇对党的信念。拨乱反正以来,他衷心拥护党的十一届三中全会以来的路线、方针、政策,心情舒畅,精神振奋。一九七九年,在党中央的亲切关怀下‘他光荣地加入了中国共产党,实现了多年的宿愿。他在答邓颖超同志的祝贺中兴奋地写道:“沧海不捐一滴水,洪炉陶冶砂成金,四化作尖兵”,“横刀哪顾头颅白,跃马紧傍青壮人,不负党员名”;充分表现了一个共产主义战士的坚定信念和高尚情操。他把入党作为自己前进道路的新起点,更加严格要求自己,不顾年老体弱多病,以惊人的毅力,经过三年的拼搏,终于把十年浩劫中被盗走的手稿重新追忆出来,写成了《计划经济大范围最优化的数学理论》不仅完整地记述了以往的研究成果,而且有了新的发展。
华罗庚同志还是一位著名的社会活动家。他是一至六届全国人大常委会委员、第六届全国政协副主席、中国民主同盟副主席.他关心国家大事,积极参加国家政治生活,为经济建设和科学、文化教育事业的发展献计献策。他积极参加民盟的活动,为民盟工作的开展,扩大爱国统一战线和实现祖国统一作出了重要贡献。近年来,他多次出国访问,广交朋友,在华裔知识分子中从事大统一、大团结的工作,常以“海外有知己,天涯成比邻”的诗句,来激励海外华人为祖国四化建设和实现国共第三次合作,完成祖国统一大业出力,并为加强我国和各国人民的友好合作和科学文化交流,作出了可贵的贡献。华罗庚同志是推动我国科学事业前进的伟大数学家,是中华民族一代人自学成才的典范。华罗庚同志的一生是光荣的、战斗的、为人民服务的一生。为了振兴中华和人类进步,他把毕生精力献给了人民的科学事业。他走过的道路,一是本世纪我国知识分子前进的光明大道。华罗庚同志给我国和世界科学文化宝库增添了新的财富,也为我们留下了丰富的精神遗产。他是我国人民、特别是青少年一代学习的榜样。华罗庚同志自学成才,勤奋求实,勇于开拓,永远向前。他一共上过九年学,只有一张初中毕业文凭,最后能成为蛮声中外的杰出科学家,完全是依靠刻苦自学取得成功的。他即使到了晚年,在学术界的声望和地位已经很高,仍然手不释卷,顽强地读和写。他从不迷信天才,认为:“天才由于积累,聪明在于勤奋”。他提出“树老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实而终”的名言,作为对自己的告诫。直到他逝世前不久,还这样写道:“发白才知智叟呆,埋头苦干向未来,勤能补拙是良剂,一分辛苦一分才。”这就是华罗庚同志成功之路的秘诀。
华罗庚同志热爱祖国,热爱党,全心全意为人民服务。他常说:“科学没有国界,但科学家是有自己的祖国的。”他企对社会主义祖国的热爱和对党的热爱有机地联系在一起,只要是党的需要他愿赴汤图火。他把“一心为人民”作为自己的座右铭,用以衡量一切是非真谬的尺度。他把自己的思想、行为、追求、理想,溶于祖国、党、人民的最高利益之中,不愧为一位品德高尚的共产党人。华罗庚同志精心扶持年轻一代茁壮成长。他十分注意发现和推荐脱颖而出的拔尖人才。他是新中国在中学生中开展数学竞赛的创始人和组织者,引导青少年从小热爱科学,进人数学研究领域,扶持他们成为我国新一代的数学家。华罗庚同志顽强拼搏,为四化奋斗到最后一息。十年前,华罗庚同志第一次患心肌梗塞症,出院后曾留下这样的诗句:“壮士临阵决死,哪管些许伤痕。向千年老魔攻战,为百代新风斗争,慷慨掷此身!”一九八二年秋,他因日夜写作,劳累过度,第二次患心肌梗塞住进了医院。他在病床上谆谆要求助手们坚持为国民经济服务的方向,在解决实际问题中推动应用数学的发展。今年六月三日,他带领一批中年业务骨干赴日本进行学术交流。十二日下午,在向日本数学界作学术报告的讲坛上,当他讲金最后一句话时,心脏病突发,不幸逝世,一颗恒星就此陨落.我们敬爱的华罗庚同志,为祖国的四化建设,为加强中日两国人民和科技界人士的友好合作献出了宝贵的生命,实现了他“最大希望就是工作到生命的最后一刻”为共产主义事业奋斗终生的壮丽誓言。华罗庚同志与我们永别了,华罗庚精神将永存。
F. 数学天才
我父母告诉我,我两岁时就对数字着迷了,我那时就试图教别人用数字积木计算。”
陶哲轩的导师、沃尔夫奖获得者埃利亚斯·施泰因曾表示,陶哲轩是百年难遇的奇才。
在本月22日的国际数学家大会开幕式上,当国际数学联盟主席鲍尔宣布本届菲尔茨奖得主名单时,大屏幕上出现了一张华人面孔,他就是澳大利亚华裔数学家陶哲轩。
陶哲轩因为在调和分析方面的研究成果而获此殊荣,他也成为继1982年首位华裔数学家丘成桐教授获菲尔茨奖后,获此殊荣的第二位华人。
刚于上月满31岁的陶哲轩,不仅是本次菲尔茨奖得主中最年轻的一位,同时也是第一位获得菲尔茨奖的澳大利亚人。
国际数学家大会是最高水平的全球性数学科学学术会议,被誉为国际数学界的“奥林匹克”。大会颁发的菲尔茨奖,被誉为“数学界的诺贝尔奖”。虽然是本次最年轻的获奖者,但陶哲轩已发表了超过80篇论文。
鉴于在调和分析方面的研究成果,他获得了本届菲尔茨奖。在接受国际数学家大会新闻机构的专访时,陶哲轩说在得知获得菲尔茨奖后一直不敢相信,“这个奖对我来说是莫大的荣誉”。
22日,陶哲轩和其他两位出席的获奖者——俄罗斯的奥昆科夫以及法国的维尔纳,在如雷的掌声中从西班牙国王卡洛斯一世手中领过奖章。获奖者每人还将获得1500美元奖金。
陶哲轩在获奖后鼓励大家说:“我想培养对数学的兴趣最重要的一点就是有能力和自由跟数学一起玩——给自己找些小挑战,设计一些小游戏等。”他还说:“我父母告诉我,我两岁时就对数字着迷了,我那时就试图教别人用数字积木计算。”
他的纪录至今无人能破
据澳大利亚墨尔本大学教授高德里称,陶哲轩从小就展现出了惊人的数学天分,他两岁就会加减法、7岁就学微积分、8岁开始念中学、12岁就在大学里研究数学,16岁大学毕业。
1986年、1987年和1988年,陶哲轩三次成为国际数学奥林匹克最年轻的参赛者,依次赢得铜牌、银牌和金牌。他未到13岁就赢得金牌的纪录至今没有人能打破。
陶哲轩于1992年至1996年在美国普林斯顿大学攻读研究生,并于21岁时获得博士学位。年仅24岁时他就成为加州大学洛杉矶分校的终身数学教授。
陶哲轩此前曾获得多个学术大奖,2000年获颁塞勒姆奖,2002年获颁博谢纪念奖,2003年获颁克雷研究奖,以表扬他对分析学的贡献。2005年,他获得利瓦伊·L·科南特奖。2004年,本·格林和陶哲轩发表一篇论文预印稿,宣称证明存在任意长的素数等差数列。
普林斯顿大学的菲尔茨奖获得者查尔斯·费弗曼回忆,“神童”陶哲轩12岁时被父亲领到普林斯顿大学接受考试。“我当时认为他比我遇到的其他神童多一点优势,现在看来是多很多。”他说。陶哲轩的导师、沃尔夫奖获得者埃利亚斯·施泰因曾表示,陶哲轩是百年难遇的奇才。
现在,陶哲轩被看作世界上最强大的“数学智囊”,他的学术研究涉及多个领域,包括调和分析、偏微分方程、组合数学、分析数论和表示论。
不仅如此,陶哲轩还是一个优秀的团队合作者。费弗曼称,陶哲轩经常召集世界级的团队攻克难题,努力发挥每一个合作者的优势。“这是一种罕见的能力。”费弗曼说。
如今,数学家们争先让陶哲轩对他们研究的问题产生兴趣,他正在变成对失败研究的“救火员”。“如果你在一个问题上被卡住了,其中一个办法就是让陶哲轩对它感兴趣。”费弗曼说。
谦虚的他
在颁奖仪式上,陶哲轩教授表现得很谦虚,而且还坦承自己感到有点 “害怕”。这一点似乎将其东方人的传统美德诠释得淋漓尽致。
固执的他
如果有课堂上没弄明白的东西,不搞清楚他是不会罢休的。他常花大量时间去反复思考一些很简单的问题,直到彻底理解为止。
天才的他
陶哲轩在加州大学的同事说:“他就像莫扎特,数学就像从他的脑子中流出来一样,不过他却没有莫扎特的人格问题,大家都非常喜欢他。”
执著的他
陶哲轩执著地热爱着数学,他鼓励大家说:“培养对数学的兴趣的最重要的一点就是跟数学一起玩,给自己找些小挑战,设计一些小游戏等。”
三兄弟都有超人智商 音乐象棋数学都拿手
据报道,陶哲轩的父母都是中国香港移民,父亲陶象国是一名医生,母亲则是香港大学理科的高材生,曾在香港的中学任教。
陶哲轩智商高达220
陶哲轩智商高达220,而他的两个弟弟陶哲渊和陶哲仁也都是澳大利亚当地出了名的神童。兄弟三人的外貌与风格虽不尽相同,但智商都超过150。
陶哲轩的弟弟陶哲渊承继了家族的“天才”传统,先后在音乐、国际象棋和数学竞赛中获得多个奖项。两岁时的陶哲渊曾被诊断患有孤僻症,但后来进入澳大利亚阿德雷德大学同时修读数学及音乐双学位。陶哲渊曾表示,他只知道自己拥有这些才能,但并不知道为什么会有这些才能。
至于年纪最小,今年只有27岁的陶哲仁,智商也达到180,曾在澳大利亚国立大学修读理科及经济学双学位,并能熟练操作四种乐器。
作为这三个天才孩子的父亲,陶象国医生用“幸运”来形容自己的家庭,并用“快乐”形容自己的三个儿子。他说:“不管他们聪不聪明,我们只是给予他们一切我们所能办到的,而我的妻子更是辞去了数学教师的工作,以满足孩子的特别需求。”
数学天才陶哲轩档案
出生日期:1975年7月17日
出生地点:澳大利亚阿得雷德
16岁获得数学学士学位
17岁完成数学硕士课程
21岁成为普林斯顿数学博士
24岁任加州大学洛杉矶分校数学教授
曾获主要奖项:
1986~1988年依次夺得数学奥林匹克铜、银、金牌
2000年获塞勒姆奖
2002年获博谢纪念奖
2003年获克雷研究奖
2005年获利瓦伊·L·科南特奖