导航:首页 > 股市分析 > 搜房网数据分析师

搜房网数据分析师

发布时间:2021-06-09 20:34:08

⑴ 数据分析师有发展前景吗

现如今智能科技的发展得越来越快,对于人才的要求也越来越高,数据分析师是结合和技术与业务的复合型人才,相信无论什么行业,无论哪个企业都迫切需要这样的人才。即使是在未来人工智能的时代,数据分析师也是必不可少的。数据的采集和分析可以被人工智能代替,但最后做出决策的还是企业的数据分析师。

据麦肯锡公司的研究预测,2020年可以利用大数据分析来做出有效决策的经理和分析师的人才缺口高达到150万,尤其是在我国,目前企业对于数据分析师的需求量大,但是数据分析师市场还不饱和,很多人都还在观望状态,选择这时候入行无疑是最好的时机。

另外再从数据分析师的薪资待遇方面来看,根据目前的市场情况来看数据分析师的薪资待遇,要比平级的岗位高许多,尤其是在诸多的一线二线城市中。即使之后数据分析师市场饱和,那么我们已经在这一行业积累了许多经验,完全可以向着管理者方向发展,薪资待遇自然不会差。

关于数据分析师有发展前景吗,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑵ 数据分析师好找工作吗,待遇怎么样

数据分析师的薪资待遇不一般来说要比同级的职位高很多,大多数都是在两成到三成。同时,数据分析师备受企业的重视。在众多的一线二线城市中,数据分析师的年薪都很高,所以想进入数据分析行业的朋友们不必担心数据分析的薪资高低。

并且现在科技发展的越来越快,使得数据分析发展的方向更多,数据分析人才会更加稀缺。尤其是在发展飞快的中国,会大力发展数据分析行业。由此可见,数据分析师的前景优渥。同时数据分析师的地位也不低,无论是在哪个行业都是如此,并且数据分析师是通用职业,很容易适应各行各业的数据分析职位。

数据分析师工作的流程简单分为两部分,第一部分就是获取数据,第二部分就是对数据进行处理。

获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。因此,基础的SQL语言是必须的。具备基本SQL基础,再学习下其中细节的语法,基本就可以到很多数据了。当每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。

想转行的话,可以先评估一下自己的基础和专业背景,一般数学、统计学和计算机专业的,转行是最有优势的,其次是市场营销、电子商务、经济学等专业,这些专业也有一定的数据分析基础能力,转行也能比较快上手。

(2)搜房网数据分析师扩展阅读:

数据分析师要求:

1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。

⑶ 数据分析师具体是做什么工作的

数据分析师具体是做:相关行业的数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。

数据分析师与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

数据分析师需要掌握的技能:

懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。

高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

以上内容参考网络-数据分析师

⑷ 数据分析师主要做什么

一是帮助企业看清现状(即通常见的搭建数据指标体系);

二是临时性分析指内标变化原因,这个很常见,容但也最头疼,有时还没分析出原因,指标可能又变了,注意识别这里面的伪需求(数据本身有波动,什么样的变化才是异常波动?一般以[均值-2*标准差,均值+2*标准差]为参考范围,个别活动则另当别论);

三是专题分析,这个专题可大可小,根据需求方(也有可能是数据分析师自己)而定,大老板提出的专题分析相对更难、更有水平一些;

四是深层次解释关系和预测未来,这个技术难度和业务理解水平要求相对更高一些。如,影响GMV的关键因子是什么?这里当然不是显而易见的付款用户数和客单价,而是需要探索的隐性因素;再如,预测下一个季度甚至是一年的GMV,以及如何达成?

⑸ 数据分析师主要是做什么的

数据分析师是专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测。

互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。

与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。

⑹ 数据分析师主要做什么

简单抄理解就是:对业务的改进优化;帮助业务发现机会;创造新的商业价值。具体如下:

改进优化业务方面,就是让业务变得更好。体现在两大方面

  1. 对企业用户体验的改进方面,优化原有业务流程,为用户提供更好的用户体验。

  2. 对企业资源的合理化分配利用上,更合理的优化配置企业资源,达到效益最大化的目的。

其次是利用数据查找人们思维上的盲点,进而发现新的业务机会的过程。

最后是在数据价值的基础上形成新的商业模式,将数据价值直接转化为金钱模式。

数据分析的工作内容

1、分析什么数据

分析什么数据与数据分析的目的有关,通常确定问题后,然后根据问题收集相应的数据,在对应的数据框架体系中形成对应的决策辅助策略。

2、什么时候数据分析

业务运营过程全程数据跟踪。

3、数据获取

内部数据主要是网络日志相关数据、客户信息数据、业务流程数据等,外部数据是第三方监测数据、企业市调数据、行业规模数据等。

4、数据分析、处理

使用的工具取决于公司的需求。

5、如何做数据分析

数据跟着业务走,数据分析的过程就是将业务问题转化为数据问题,然后再还原到业务场景中去的过程。

⑺ 怎么做好数据分析师

1、你抄需要有应用数学、统计学、数量经济学专业本科或者工学硕士层次水平的数学知识背景。
2、至少熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门。
3、至少能够用Acess等进行数据库开发;
4、至少掌握一门数学软件:matalab,mathmatics进行新模型的构建。
5、至少掌握一门编程语言;
6,当然还要其他应用领域方面的知识,比如市场营销、经济统计学等,因为这是数据分析的主要应用领域。

⑻ 如何成为网站数据分析师①

1.玩转Excel

Excel是一个最原始而且最容易入手的分析工具之一,如果你有少量的数据进行分析和汇总的话,Excel是你的不二之选,结合丰富的函数与公式,你能轻松的得到你想要的数据,如果你懂得计算机语言,会使用VBA进行编程那就更是如虎添翼了,并且还可以轻松的制作棒图,饼图,折线图等图表。但是Excel不可能是完美的分析工具,因为他的数据容量实在是太小了,超过1万行的数据请不要使用Excel。
1.1.常用函数:

1.2.常用功能:

2.网站分析基础知识

了解一些网站分析的基础知识是必须的,你要知道什么是会话,什么是PV,什么是UU/UV等指标值的含义。如下图(摘自《网站分析基础教程第二章》)所示:

3.网站开发的知识

网站分析师通过衡量各种指标值的优劣来评价网站的状况,以及提出改善优化的对策,如果分析师自己对网站的开发和构筑知识一点都不了解,也就不能准确的通过分析指标值的高低衡量网站的运营状况。
作为一名合格的网站分析师,你需要了解一些网站建设和运营的知识,还有网站设计的知识,以及用户体验相关的知识。这样的话你才能提出更有高度和深度的分析报告。
4.网络营销的知识

网站分析师的工作范围从宏观上可以分为“站内”和“站外”两大领域。站内重点在于改善用户体验,优化转化路径,SEO,分析用户行为等站内活动;站外的工作重点则在于如何更多更准确更优质的吸引用户进入网站。
所谓站外的工作主要就是指网络营销,网络营销按照具体的实现方式可以分为:展示广告(DisplayAdvertising)、PPC推广、SEO、邮件营销、视频推广、QQ群推广、博客营销、微博营销、SNS营销等。如果想成为网站分析师你需要学习如下知识:
4.1.广告类型
搜索引擎广告(PPC)
交换链接
横幅广告
邮件营销
传统媒体广告
4.2.广告相关指标
展现数(Impressions)
点击数
点击率(Click-throughRate)
CPC(CostPerClick)
CPA(CostPerAcquisition)
转化率(ConversionRate)
ROAS(ReturnOnAdvertisingSpend)
4.3.SEO知识
主流搜索引擎的排名算法
TITLE,META,Hn,h1等优化
5.测试方法

当网站分析指标的数值变得不是非常乐观的时候,或者你想做一次大规模的推广的时候,也可能是你需要对网站进行改版的时候,作为分析师需要预知改善后的效果是否能够达到预期,这一点是光凭经验很难做到的事情,那么就需要网站分析师聪明的利用师验方法进行验证,这是最直接而且准确有效的方法。
做网站分析师需要学会使用如:A/B测试,多变量测试,用户体验测试等测试方法对改善方案进行预评估,以减少新方案的实施风险。
6.交流能力

作为一名网站分析师,你需要和很多的人协同完成工作任务,其中包括项目经理,产品经理,运营经理,实施经理以及工具提供商等。高效率,准确的交流显得尤为重要。
对于交流来说,语言的表达能力作为最基本的能力要素不可或缺,但想要能顺畅的交流仅仅依靠语言是远远不够的,还需要有一定的资料的组织能力和总结能力,以及团队合作意识。
7.演讲的能力

当以网站分析师为主导进行一次网站的改版或升级的时候,通常的做法是用数字和图表来说服决策层和保守派,但事实上并不那么简单,说服更多人除了靠准确的分析数据以外,还需要网站分析师非常具有煽动性的演讲,以及面对质疑从容不迫的回应。网站分析师需要把自己的自信通过演讲的形式传播给参加会议的所有在场的人。
8.会做PPT
演讲和演示的时候,必备的利器!当然如果你能够做出很炫的动画效果将能感染更多的。
9.计划管理能力
如果你在一家小公司担任网站分析师职务的话,计划管理可能显得不那么重要,但如果你是一家大公司的网站运营经理,或者带领一个几十人的分析师团队的话,计划的管理能力将显得尤为重要。为了更好的和项目经理以及公司管理层的交流你需要具备这项技能,甚至有必要学习一些项目管理的相关知识,比如PMP认证等。

⑼ 数据分析师是做什么的

数据分析师主要工作是在本行业内将各种数据进行搜集、整理、分析,然后根据这些数据进行分析判断,在分析数据后对行业发展、行业知识规则等等进行预测和挖掘。数据分析师是数据师其中的一种,另一种是数据挖掘工程师,两者都是专业型人才。

(9)搜房网数据分析师扩展阅读

数据分析师和数据挖掘工程师的区别

1、“数据分析”的重点是观察数据,而“数据挖掘”的重点是从数据中发现“知识规则”。

2、“数据分析”得出的结论是人的智能活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则。

3、“数据分析”得出结论的运用是人的智力活动,而“数据挖掘”发现的知识规则,可以直接应用到预测。

4、“数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。

5、相对而言,数据挖掘工程师对统计学,机器学习等技能的要求比数据分析师高得多。

6、很多情况下,数据挖掘工程师同时兼任数据分析师的角色。

参考资料来源:网络--数据分析师

参考资料来源:网络--数据师

阅读全文

与搜房网数据分析师相关的资料

热点内容
张茵家族信托 浏览:69
世能氢电科技有限公司投资100亿 浏览:593
外汇每个月9分 浏览:440
光大量化基金能好起来吗 浏览:665
海星外汇短线交易合法吗 浏览:713
沈阳哪有信托公司 浏览:228
暂停地产类信托 浏览:989
外汇提前打损 浏览:622
四川烽源融资担保有限公司 浏览:972
北京干贷款行业 浏览:642
国企投信托 浏览:716
苏州信托恒信 浏览:608
棚改融资收紧 浏览:423
价格最高的st股票是哪个好 浏览:752
三板股票论坛 浏览:352
股票涨幅排名按什么代码 浏览:868
广东南粤投资董事长 浏览:177
开放式基金净值计算方法 浏览:324
69000人民币用财务数据标识 浏览:21
甩挂融资租赁 浏览:200