① 谁有《2010年中国氢燃料电池价格走势及影响因素深度调研报告》
2010年中国氢燃料电池价格走势及影响因素深度调研报告
报告关键词: 氢燃料电池 电子
2009年10月26日君略产业咨询网 共有收藏到:
[报告名称]:2010年中国氢燃料电池价格走势及影响因素深度调研报告
[交付方式]:EMAIL电子版或特快专递
[价 格]:文本版:9800元PDF电子版:9600元
[传真订购]:010-62351146 下载 订购合同
[购买热线]:010-62353824 010-62351146
报告目录:
【报告撰写思路及价值体现】
2010年中国氢燃料电池行业发展迅速,国内生产技术不断提升。国内企业为了获得更大的投资收益,在生产规模和产品质量上不断提升。但是来自国际金融危机、外部政策环境恶化、产业上游原料价格上涨,下游需求萎缩等众多不利因素使得氢燃料电池行业在2010年的市场状况及价格走势备受关注。
国际经济大环境:
2010年国际金融危机全球影响是否仍将加剧蔓延?
2010年国际进出口市场有何新趋势?
2010年国际产业转移如何影响中国?
国家宏观经济层面:
2010年中国经济是否已经走出金融危机影响逐步回暖?
2010年中国经济通胀压力将如何变化?
2010年中国宏观调控政策趋势怎样?
2010年中国4万亿投资及十大产业振兴规划对经济走势有何影响?
氢燃料电池产业环境:
2010年氢燃料电池产业上游原料价格涨幅如何?
2010年氢燃料电池下游需求产业发展趋势如何,市场需求有何变化?
2010年氢燃料电池价格主要影响因素及供需格局变化趋势怎样?
2009年2月以来为了应对全球金融危机,国家出台了一系列产业振兴规划。通过本报告您可以清晰把握2010年中国刺激经济发展政策陆续出台大背景下中国氢燃料电池产业全景式发展脉络,从宏观国际经济环境、中观产业环境到微观企业内部环境三个层面对其内在传导机制做出科学判断。尤为重要的是,2010年是“十一五”规划的最后一年,是全面总结“十一五”规划执行经验,科学制定“十二五”规划的关键一年,当前国家各部门、各地区、各行业正积极开展氢燃料电池产业“十二五”规划前期重大课题的研究工作。因此全面解析下一个五年规划要点及趋势从而准确把握“十二五”投资机会尤为重要。
本调查报告由北京君略产业研究院依据市场调查资料、行业统计数据、国内外企业访谈结果、科研院所技术进展、业内专业期刊杂志、研究院产业数据库(JLceir-Data)等多方面情报数据撰写而成。作为从事中国氢燃料电池事业的专业人士的参考资料,深信本调查报告能在您制订经营战略时发挥一臂之力。
【数据说明】
【目 录】
第一章 氢燃料电池行业基本背景及发展概述
第一节 氢燃料电池行业国内外发展现状对比分析
1. 全球发展重点区域分析
2. 全球发展阶段及周期分析
3. 国内发展现状及中外对比分析
第二节 中国氢燃料电池产业链上下游分析
1. 氢燃料电池产业链模型介绍
2. 氢燃料电池产业链模型分析
2.1 产业链主要环节分析
2.2 产业链各环节传导机制分析
第三节 氢燃料电池行业主要细分产品构成及相关技术标准
第四节 氢燃料电池行业主要产品应用领域及替代品分析
第五节 氢燃料电池行业生产技术对比分析
1. 技术应用现状
2. 国内外技术差距对比分析
3. 最新技术发展前沿展望
第六节 中国产业发展的“波特五力模型”分析
1. “波特五力模型”介绍
2. 氢燃料电池产业环境“波特五力模型”分析
第二章 国外氢燃料电池行业生产需求情况分析(2009年度)
(本章对国外氢燃料电池产品市场进行全面分析,以产销结构分析来说明国外同类产品的供需格局,下游需求结构及市场份额。本章对把握国外市场动向,制定进出口策略具有很强的参考作用。另外对未来2年国外市场发展趋势预测则让您更加全面把握氢燃料电池行业的整体发展态势。)
第一节 2009年国外产品生产总体概况
第二节 2009年国外产品消费总体情况
第三节 国外产品主要生产企业分析
第四节 国外产品下游各消费领域消费特点
第五节 2010-2013年国外氢燃料电池产品生产消费情况预测
第三章 国内氢燃料电池行业生产需求情况介绍(2009年度)
第一节 2009年国内氢燃料电池产品总体供给分析
1. 主要区域产量情况
2. 2000-2009年市场供给趋势及影响因素分析
3. 2009年氢燃料电池行业新增产能分析
3.1 新增产能分布情况
3.2 2009年市场整体产能分析
第二节 2009年国内氢燃料电池行业产品消费总体情况分析
1. 区域消费市场分析
2. 2000-2008年市场需求趋势及影响因素分析
3. 2009年市场需求领域及构成分析
3.1 主要需求行业及需求份额分析
3.2 下游需求结构变化情况分析
第三节 国内氢燃料电池行业主要生产企业分析
(选取2-3家业内标杆企业进行调研分析,主要从企业内部核心财务指标、产品产销量,市场竞争策略及企业自身SWOT分析)
第四节 国内主要氢燃料电池行业经销企业与国内产品贸易分析
第五节 2009年氢燃料电池行业重点在建、拟建项目
1. 在建项目区域分布情况
2. 在建项目规模分析
第六节 2010-2013年国内氢燃料电池产品未来供需格局预测
1. 市场供给预测(2010-2013年)
2. 市场需求预测(2010-2013年)
3. 影响市场供需结构主要因素分析及预测
第四章 国内氢燃料电池行业产品价格走势及影响因素分析(2009-2010年度)
第一节 国内产品2008-2009年价格回顾
1. 2008-2009年价格走势整体趋势分析
2. 影响2008-2009年价格走势主要因素分析
2.1 政策因素分析
2.2 市场因素分析
2.3 技术因素分析
2.4 突发事件因素分析
2.5 其他因素分析
第二节 中国氢燃料电池行业产品经销模式分析
1. 销售主要渠道分析
2. 价格传导机制分析
第三节 2010年氢燃料电池行业价格走势及影响因素预测
1. 2010年产品价格走势预测
1.1 原材料价格预测
1.2 成本价格变动预测
1.3 供需格局趋势预测
2. 2010年氢燃料电池行业价格走势影响因素
2.1 全球金融危机影响分析
2.2 人民币汇率变化影响
2.3 全球产业转移影响分析
2.4 其他因素分析
第五章 中国氢燃料电池行业进出口市场分析及趋势预测(根据具体产品不同本章有删节)
第一节 亚洲、欧盟、北美自由贸易区市场分析
第二节 国内产品2009年进口数据分析
第三节 国内产品2009年出口数据分析
第四节 2010-2013年国内产品未来进出口情况预测
1. 2010-2013年氢燃料电池行业进出口市场有利因素分析预测
2. 2010-2013年氢燃料电池行业出口市场不利因素分析预测
第六章 2010年氢燃料电池行业上游原材料供应状况对价格走势影响深度分析
第一节 氢燃料电池产品主要原材料构成分析
第二节 主要原材料2008-2009年价格及供应情况
1. 主要原材料价格变化趋势分析
2. 原材料行业产能及供给分析
第三节 2010-2013年主要原材料未来价格及供应情况预测
1. 价格预测
2. 供给量预测
3. 上游原材料产业议价能力分析
第七章 2010年中国氢燃料电池市场整体运行趋势预测
第一节 2010-2013年市场盈利预测
1. 氢燃料电池行业主要财务指标分析
2. 氢燃料电池行业市场盈利趋势及影响因素预测
第二节 国内生产、营销企业投资运作模式
第三节 外销与内销优势分析
第八章 中国氢燃料电池行业项目投资风险及可行性分析
第一节 产品技术应用注意事项
第二节 项目投资注意事项
第三节 产品生产开发注意事项
第四节 产品销售注意事项
第五节 行业分析基本结论
第六节 项目投资可研报告基本框架
第九章 本课题报告主要结论及策略建议
第一节 本报告主要结论及观点
第二节 君略研究院独家策略建议
1. 宏观策略角度
2. 中观产业角度
3. 微观企业角度
【图表目录】
图表 氢燃料电池产业链结构图
图表 氢燃料电池行业主要下游市场需求构成
图表 2009年中国氢燃料电池下游市场分布
图表 氢燃料电池行业产品质量标准
图表 氢燃料电池部分产品价格情况
图表 氢燃料电池的产业环境“波特五力”分析模型
图表 2008-2009年国内氢燃料电池产量变化图
图表 2008-2009年中国氢燃料电池行业产能利用情况
图表 2009年各主体国内的氢燃料电池销售量
图表 2010-2013年国内氢燃料电池产量预测图
图表 2010-2013年国内氢燃料电池消费量预测图
图表 2008-2009年中国氢燃料电池供需状况变化图
图表 2009年中国各种经销模式市场份额对比图
图表 2010-2013年中国氢燃料电池供需状况预测图
图表 2009年中国氢燃料电池市场不同因素的价格影响力对比
图表 2010-2013年中国氢燃料电池上游原料的价格走势图
图表 2009年氢燃料电池上游原料价格变动情况
图表 2010-2013年中国氢燃料电池上游原料价格预测图
② 燃料电池电动汽车商业化存在的问题 这个论文哪里可以下载的到
综述了燃料电池电动汽车商业化存在的9个方面的问题,这些问题解决的程度和速度,关系到燃料电池电动汽车商业化的时间问题。这些问题可以分为两类:性能与成本问题和燃料供应与基础设施问题。介绍了解决这些问题的方法以及与此相关的研究方向和热点
③ 马斯克说燃料电池是""智商税",他的说法有几分可信度
其实马斯克已经不是第一次批评燃料电池了,短期来看,燃料电池无论是发动机还是储能系统造价都昂贵,远不如电动汽车,但长期来看,如果燃料电池成本能够降低,未来可能有发展前景。据媒体报道,马斯克日前在其社交账号发文表示,燃料电池的研发就是在收“智商税”,把燃料电池用在汽车上是非常荒谬的说法。不过虽然马斯克一直看衰燃料电池,但燃料电池依然是各国新能源行业发力的重点。尤其是特斯拉的竞争对手,例如丰田和现代,他们早早就迈入了研发燃料电池的步伐当中。
④ 燃料电池汽车相对于其他新能源汽有哪些优势
优点:
1、零排放或近似零排放。
2、减少了机油泄露带来的水污染。
3、降低了温室气体的排放。
4、燃油电池的转化效率高(60%左右),整车燃油经济性良好。
5、运行平稳、无噪声。
缺点:
燃料电池成本高昂,同时使用成本(氢)也昂贵。
⑤ 低温燃料电池存在的主要问题和未来的发展趋势
2013-2017年中国燃料电池行业市场研究与投资预测分析报告指出现在燃料电池还处于商业化实验阶段,暂未广泛应用的原因是燃料电池生产成本居高不下。伴随燃料电池技术的不断进步,燃料电池生产成本将不断下降,预计未来几年将会逐渐普及应用,成为未来新能源时代的主导者。预计到2013年全球燃料电池市场将达到380亿美元。静止式燃料电池市场将从2008年20亿美元增大到2013年100亿美元,便携式燃料电池市场2013年将达250亿美元,汽车燃料电池市场将从2008年6亿美元增大到2013年100亿美元。可以上他们的网站前瞻咨询网上去看看有没有你需要的!
希望对你有所帮助!
⑥ 燃料电池的现状
在中国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。“八五”期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。在中国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对中国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年中国加强了在PEMFC方面的研究力度。 2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华在EVS16届大会上宣布,中国将在2000年装出首台燃料电池电动车。此前参与燃料电池研究的有关概况如下:
1:PEMFC的研究状况
中国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。 中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达0.35W/cm2。
复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。厦门大学与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。
1994年,上海大学与北京石油大学合作研究PEMFC(“八五”攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。
北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,单体电池的电流密度为150mA/cm2。
中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。
天津电源研究所1997年开始PEMFC的研究,拟从国外引进1.5kW的电池,在解析吸收国外先进技术的基础上开展研究。
1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。
2:MCFC的研究简况
在中国开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。
1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。
90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。
北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。
3:SOFC的研究简况
最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达1.18V,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。
1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手制成了管式和平板式的单体电池,功率密度达0.09W/cm2~0.12W/cm2,电流密度为150mA/cm2~180mA/cm2,工作电压为0.60V~0.65V。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。
华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。 发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,它已是能源、电力行业不得不正视的课题。
磷酸型燃料电池(PAFC)
受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。
东芝公司从70年代后半期开始,以分散型燃料电池为中心进行开发以后,将分散电源用11MW机以及200kW机形成了系列化。11MW机是世界上最大的燃料电池发电设备,从1989年开始在东京电力公司五井火电站内建造,1991年3月初发电成功后,直到1996年5月进行了5年多现场试验,累计运行时间超过2万小时,在额定运行情况下实现发电效率43.6%。在小型现场燃料电池领域,1990年东芝和美国IFC公司为使现场用燃料电池商业化,成立了ONSI公司,以后开始向全世界销售现场型200kW设备"PC25"系列。PC25系列燃料电池从1991年末运行,到1998年4月,共向世界销售了174台。其中安装在美国某公司的一台机和安装在日本大阪梅田中心的大阪煤气公司2号机,累计运行时间相继突破了4万小时。从燃料电池的寿命和可靠性方面来看,累计运行时间4万h是燃料电池的长远目标。东芝ONSI已完成了正式商用机PC25C型的开发,早已投放市场。PC25C型作为21世纪新能源先锋获得日本通商产业大奖。从燃料电池商业化出发,该设备被评价为具有高先进性、可靠性以及优越的环境性设备。它的制造成本是$3000/kW,将推出的商业化PC25D型设备成本会降至$1500/kW,体积比PC25C型减少1/4,质量仅为14t。2001年,在中国就将迎来第一座PC25C型燃料电池电站,它主要由日本的MITI(NEDO)资助的,这将是我国第一座燃料电池发电站。
质子交换膜燃料电池(PEMFC)
著名的加拿大Ballard公司在PEMFC技术上全球领先,它的应用领域从交通工具到固定电站,其子公司BallardGenerationSystem被认为在开发、生产和市场化零排放质子交换膜燃料电池上处于世界领先地位。BallardGenerationSystem最初产品是250kW燃料电池电站,其基本构件是Ballard燃料电池,利用氢气(由甲醇、天然气或石油得到)、氧气(由空气得到)不燃烧地发电。Ballard公司正和世界许多著名公司合作以使BallardFuelCell商业化。BallardFuelCell已经用于固定发电厂:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同组建了BallardGenerationSystem,共同开发千瓦级以下的燃料电池发电厂。经过5年的开发,第一座250kW发电厂于1997年8月成功发电,1999年9月送至IndianaCinergy,经过周密测试、评估,并提高了设计的性能、降低了成本,这导致了第二座电厂的诞生,它安装在柏林,250kW输出功率,也是在欧洲的第一次测试。很快Ballard公司的第三座250kW电厂也在2000年9月安装在瑞士进行现场测试,紧接着,在2000年10月通过它的伙伴EBARABallard将第四座燃料电池电厂安装在日本的NTT公司,向亚洲开拓了市场。在不同地区进行的测试将大大促进燃料电池电站的商业化。第一个早期商业化电厂将在2001年底面市。下图是安装在美国Cinergy的Ballard燃料电池装置,正在测试。
图是安装在柏林的250kW PEMFC燃料电池电站:
在美国,PlugPower公司是最大的质子交换膜燃料电池开发公司,他们的目标是开发、制造适合于居民和汽车用经济型燃料电池系统。1997年,PlugPower模块第一个成功地将汽油转变为电力。PlugPower公司开发出它的专利产品PlugPower7000居民家用分散型电源系统。商业产品在2001年初推出。家用燃料电池的推出将使核电站、燃气发电站面临挑战,为了推广这种产品,1999年2月,PlugPower公司和GEMicroGen成立了合资公司,产品改称GEHomeGen7000,由GEMicroGen公司负责全球推广。此产品将提供7kW的持续电力。GE/Plug公司宣称其2001年初售价为$1500/kW。他们预计5年后,大量生产的燃料电池售价将降至$500/kW。假设有20万户家庭各安装一个7kW的家用燃料电池发电装置,其总和将接近一个核电机组的容量,这种分散型发电系统可用于尖峰用电的供给,又因分散式系统设计增加了电力的稳定性,即使少数出现了故障,但整个发电系统依然能正常运转。 在Ballard公司的带动下,许多汽车制造商参加了燃料电池车辆的研制,例如:Chrysler(克莱斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大众)和Volvo(富豪)等,它们许多正在使用的燃料电池都是由Ballard公司生产的,同时,它们也将大量的资金投入到燃料电池的研制当中,克莱斯勒公司给Ballard公司注入4亿5千万加元用于开发燃料电池汽车,大大的促进了PEMFC的发展。1997年,Toyota公司就制成了一辆RAV4型带有甲醇重整器的跑车,它由一个25kW的燃料电池和辅助干电池一起提供了全部50kW的能量,最高时速可以达到125km/h,行程可达500km。这些大的汽车公司均有燃料电池开发计划,虽然燃料电池汽车商业化的时机还未成熟,但几家公司已确定了开始批量生产的时间表,Daimler-Benz公司宣布,到2004年将年产40000辆燃料电池汽车。因而未来十年,极有可能达到100000辆燃料电池汽车。
熔融碳酸盐燃料电池(MCFC)
50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。MCFC的主要研制者集中在美国、日本和西欧等国家。预计2002年将商品化生产。
美国能源部(DOE)2000年已拨给固定式燃料电池电站的研究费用4420万美元,而其中的2/3将用于MCFC的开发,1/3用于SOFC的开发。美国的MCFC技术开发一直主要由两大公司承担,ERC(EnergyResearchCorporation)(现为FuelCellEnergyInc.)和M-CPower公司。他们通过不同的方法建造MCFC堆。两家公司都到了现场示范阶段:ERC1996年已进行了一套设于加州圣克拉拉的2MW的MCFC电站的实证试验,正在寻找3MW装置试验的地点。ERC的MCFC燃料电池在电池内部进行无燃气的改质,而不需要单独设置的改质器。根据试验结果,ERC对电池进行了重新设计,将电池改成250kW单电池堆,而非原来的125kW堆,这样可将3MW的MCFC安装在0.1英亩的场地上,从而降低投资费用。ERC预计将以$1200/kW的设备费用提供3MW的装置。这与小型燃气涡轮发电装置设备费用$1000/kW接近。但小型燃气发电效率仅为30%,并且有废气排放和噪声问题。与此同时,美国M-CPower公司已在加州圣迭戈的海军航空站进行了250kW装置的试验,计划在同一地点试验改进75kW装置。M-CPower公司正在研制500kW模块,计划2002年开始生产。
日本对MCFC的研究,自1981年"月光计划"时开始,1991年后转为重点,每年在燃料电池上的费用为12-15亿美元,1990年政府追加2亿美元,专门用于MCFC的研究。电池堆的功率1984年为1kW,1986年为10kW。日本同时研究内部转化和外部转化技术,1991年,30kW级间接内部转化MCFC试运转。1992年50-100kW级试运转。1994年,分别由日立和石川岛播磨重工完成两个100kW、电极面积1m2,加压外重整MCFC。另外由中部电力公司制造的1MW外重整MCFC正在川越火力发电厂安装,预计以天然气为燃料时,热电效率大于45%,运行寿命大于5000h。由三菱电机与美国ERC合作研制的内重整30kWMCFC已运行了10000h。三洋公司也研制了30kW内重整MCFC。石川岛播磨重工有世界上最大面积的MCFC燃料电池堆,试验寿命已达13000h。日本为了促进MCFC的开发研究,于1987年成立了MCFC研究协会,负责燃料电池堆运转、电厂外围设备和系统技术等方面的研究,它已联合了14个单位成为日本研究开发主力。
欧洲早在1989年就制定了1个Joule计划,目标是建立环境污染小、可分散安装、功率为200MW的"第二代"电厂,包括MCFC、SOFC和PEMFC三种类型,它将任务分配到各国。进行MCFC研究的主要有荷兰、意大利、德国、丹麦和西班牙。荷兰对MCFC的研究从1986年已经开始,1989年已研制了1kW级电池堆,1992年对10kW级外部转化型与1kW级内部转化型电池堆进行试验,1995年对煤制气与天然气为燃料的2个250kW系统进行试运转。意大利于1986年开始执行MCFC国家研究计划,1992-1994年研制50-100kW电池堆,意大利Ansodo与IFC签定了有关MCFC技术的协议,已安装一套单电池(面积1m2)自动化生产设备,年生产能力为2-3MW,可扩大到6-9MW。德国MBB公司于1992年完成10kW级外部转化技术的研究开发,在ERC协助下,于1992年-1994年进行了100kW级与250kW级电池堆的制造与运转试验。现在MBB公司拥有世界上最大的280kW电池组体。
资料表明,MCFC与其他燃料电池比有着独特优点:
a.发电效率高比PAFC的发电效率还高;
b.不需要昂贵的白金作催化剂,制造成本低;
c.可以用CO作燃料;
d.由于MCFC工作温度600-1000℃,排出的气体可用来取暖,也可与汽轮机联合发电。若热电联产,效率可提高到80%;
e.中小规模经济性与几种发电方式比较,当负载指数大于45%时,MCFC发电系统成本最低。与PAFC相比,虽然MCFC起始投资高,但PAFC的燃料费远比MCFC高。当发电系统为中小规模分散型时,MCFC的经济性更为突出;
f.MCFC的结构比PAFC简单。
固体氧化物燃料电池(SOFC)
SOFC由用氧化钇稳定氧化锆(YSZ)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被氧化,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。
SOFC的特点如下:
由于是高温动作(600-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电。
由于氧离子是在电解质中移动,所以也可以用CO、煤气化的气体作为燃料。
由于电池本体的构成材料全部是固体,所以没有电解质的蒸发、流淌。另外,燃料极空气极也没有腐蚀。l动作温度高,可以进行甲烷等内部改质。
与其他燃料电池比,发电系统简单,可以期望从容量比较小的设备发展到大规模设备,具有广泛用途。
在固定电站领域,SOFC明显比PEMFC有优势。SOFC很少需要对燃料处理,内部重整、内部热集成、内部集合管使系统设计更为简单,而且,SOFC与燃气轮机及其他设备也很容易进行高效热电联产。下图为西门子-西屋公司开发出的世界第一台SOFC和燃气轮机混合发电站,它于2000年5月安装在美国加州大学,功率220kW,发电效率58%。未来的SOFC/燃气轮机发电效率将达到60-70%。
被称为第三代燃料电池的SOFC正在积极的研制和开发中,它是正在兴起的新型发电方式之一。美国是世界上最早研究SOFC的国家,而美国的西屋电气公司所起的作用尤为重要,现已成为在SOFC研究方面最有权威的机构。 早在1962年,西屋电气公司就以甲烷为燃料,在SOFC试验装置上获得电流,并指出烃类燃料在SOFC内必须完成燃料的催化转化与电化学反应两个基础过程,为SOFC的发展奠定了基础。此后10年间,该公司与OCR机构协作,连接400个小圆筒型ZrO2-CaO电解质,试制100W电池,但此形式不便供大规模发电装置应用。80年代后,为了开辟新能源,缓解石油资源紧缺而带来的能源危机,SOFC研究得到蓬勃发展。西屋电气公司将电化学气相沉积技术应用于SOFC的电解质及电极薄膜制备过程,使电解质层厚度减至微米级,电池性能得到明显提高,从而揭开了SOFC的研究崭新的一页。80年代中后期,它开始向研究大功率SOFC电池堆发展。1986年,400W管式SOFC电池组在田纳西州运行成功。
燃料电池
另外,美国的其它一些部门在SOFC方面也有一定的实力。位于匹兹堡的PPMF是SOFC技术商业化的重要生产基地,这里拥有完整的SOFC电池构件加工、电池装配和电池质量检测等设备,是目前世界上规模最大的SOFC技术研究开发中心。1990年,该中心为美国DOE制造了20kW级SOFC装置,该装置采用管道煤气为燃料,已连续运行了1700多小时。与此同时,该中心还为日本东京和大阪煤气公司、关西电力公司提供了两套25kW级SOFC试验装置,其中一套为热电联产装置。另外美国阿尔贡国家实验室也研究开发了叠层波纹板式SOFC电池堆,并开发出适合于这种结构材料成型的浇注法和压延法。使电池能量密度得到显著提高,是比较有前途的SOFC结构。 在日本,SOFC研究是“月光计划”的一部分。早在1972年,电子综合技术研究所就开始研究SOFC技术,后来加入"月光计划"研究与开发行列,1986年研究出500W圆管式SOFC电池堆,并组成1.2kW发电装置。东京电力公司与三菱重工从1986年12月开始研制圆管式SOFC装置,获得了输出功率为35W的单电池,当电流密度为200mA/cm2时,电池电压为0.78V,燃料利用率达到58%。1987年7月,电源开发公司与这两家公司合作,开发出1kW圆管式SOFC电池堆,并连续试运行达1000h,最大输出功率为1.3kW。关西电力公司、东京煤气公司与大阪煤气公司等机构则从美国西屋电气公司引进3kW及2.5kW圆管式SOFC电池堆进行试验,取得了满意的结果。从1989年起,东京煤气公司还着手开发大面积平板式SOFC装置,1992年6月完成了100W平板式SOFC装置,该电池的有效面积达400cm2。现Fuji与Sanyo公司开发的平板式SOFC功率已达到千瓦级。另外,中部电力公司与三菱重工合作,从1990年起对叠层波纹板式SOFC系统进行研究和综合评价,研制出406W试验装置,该装置的单电池有效面积达到131cm2。
在欧洲早在70年代,联邦德国海德堡中央研究所就研究出圆管式或半圆管式电解质结构的SOFC发电装置,单电池运行性能良好。80年代后期,在美国和日本的影响下,欧共体积极推动欧洲的SOFC的商业化发展。德国的Siemens、DomierGmbH及ABB研究公司致力于开发千瓦级平板式SOFC发电装置。Siemens公司还与荷兰能源中心(ECN)合作开发开板式SOFC单电池,有效电极面积为67cm2。ABB研究公司于1993年研制出改良型平板式千瓦级SOFC发电装置,这种电池为金属双极性结构,在800℃下进行了实验,效果良好。现正考虑将其制成25~100kW级SOFC发电系统,供家庭或商业应用。
⑦ 锂电池与氢燃料电池,哪个更有前途
氢燃料电池更有前途,锂电池有污染,而氢燃料电池通过氢和氧的结合产生动能,这是无污染的。锂电池和氢燃料电池各有利弊。细分而言,两者在充电/补充燃料时间、污染水平、续航里程、充电站成本和电池成本方面有各自的优势。例如,氢燃料电池只需几分钟就可以补给燃料,但是锂电池即便使用超充通常也需要一个多小时。例如特斯拉V3超充,虽然它可以有极快的充电速度,但并不代表一般情况。
由于中国是未来最大的新能源市场,大多数汽车公司在未来3-7年(2020-2025年)的计划中都将有氢燃料电池的字样,也基本都是出现在商用车名单上。
⑧ 燃料电池的行业有哪些
燃料电池是一种将燃料与氧化剂的化学能通过电化学反应直接转换成电能的发电装置。主要由正极、负极、电解质和辅助设备组成。
常用的燃料除氢气外还有甲醇、联氨、烃类及一氧化碳等。氧化剂一般为氧气或空气。电解质常见的有磷酸、氢氧化钾、熔融碳酸盐及离子交换膜等。
燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装臵。不同于传统内燃机的是,燃料中的化学能不是通过燃烧,而是通过电化学反应释 放,因而具有高效率、零排放的优势。
燃料电池主要分为六种类型,其中 PAFC、DMFC、PEMFC这三种类型使用铂系金属催化剂。
燃料电池主要类型
数据来源:公开资料、前瞻产业研究院整理
全球燃料电池发展现状
全球燃料电池市场发展迅猛,据前瞻产业研究院发布的《燃料电池行业市场前瞻与投资战略规划分析报告》数据显示,2008年全球燃料电池出货量为9.5千件,2015年燃料电池出货量达到71.5千件,是2008年的7.5倍。
2008-2015年燃料电池市场出货量情况
数据来源:前瞻产业研究院整理
我国燃料电池行业市场规模
2015年我国燃料电池行业出货量约10.5MW,同比2014年的9.2MW增长了14.13%。
2010-2015年中国燃料电池行业出货量情况
数据来源:前瞻产业研究院整理
国际燃料电池区域格局
按应用领域划分,2015年固定应用行业燃料电池出货量占总出货量的68.5%,达49千件;便携应用出货量占24.6%,达17.6千件;交通运输行业出货量占6.9%,为4.9千件。其中,2015年亚洲燃料电池出货量占全球出货量的65.2%,达46.6千件;北美燃料电池出货量占22.0%,达15.7千件;欧洲出货量占11.6%,达8.3千件。
2015年国际燃料电池区域格局(出货量按应用领域)
数据来源:前瞻产业研究院整理
燃料电池行业未来发展方向
燃料电池技术是内燃机技术最好的替代物,代表了汽车未来的发展方向。但如果将发展燃料电池汽车的几个制约因素考虑进来,则会发现燃料电池汽车目前和今后一段时问尚不具备商业化的条件。最乐观的预测,以纯氢为燃料的燃料电池汽车的商业化生产至少还需15年以上的时问,即使在一定程度上实现了商业化,也会是以一种高成本的方式。
燃料电池汽车尚处于产业化起步阶段
目前,国内运行的燃料电池汽车主要以示范车为主,一般用在特殊场合展示、旅游观光代步,还没有实现真正的商业化。国际市场上虽然有部分燃料电池车在商业化运营,但仍以出租车为主。
燃料电池车的高昂成本使其短期内很难走向市场。2008年北京奥运会上展示的3辆燃料电池客车,每辆客车的成本300多万元,而目前公交系统进口的欧Ⅳ标准传统发动机低地板大客车售价仅在100多万元。从市场经济学角度讲,高成本很难完成市场化推广,而无法实现市场化就不可能大规模批量生产,进而成本就无法降下来,最终导致成本与销售的恶性循环。
政策支持是行业发展的主要动力
完善新能源汽车扶持政策,支持动力电池、燃料电池汽车等研发,开展智能网联汽车示范试点。机关企事业单位要落实车辆更新中新能源汽车占比要求,加大对新增及更新公交车中新能源汽车比例的考核力度,对不达标地区要扣减燃油和运营补贴。创新分时租赁、车辆共享等运营模式。各地不得对新能源汽车实行限行、限购,已实行的应当取消。
重点投资质子交换膜燃料电池新材料的研发和生产
质子交换膜燃料电池是最接近商业化的一种燃料电池, 最有希望作为未来电动汽车的发动机,近几十年来取得了长足的发展。2005-2010 年,单是小型电源领域,全世界已经有超过15万套燃料电池交付使用,总功率超过了15MW,其中96%是质子交换膜燃料电池。在交通领域中,质子交换膜燃料电池因为最有希望成为未来电动汽车的发动机而受到广泛关注,全球几乎主要的汽车生产商都在致力于燃料电池汽车的开发。
重点投资燃料电池汽车的研发和生产
从长远来看,氢能作为最洁净、高效的新能源,已经引起全世界的广泛关注。燃料电池汽车以其零尾气排放和对能源的独立性,有望实现汽车工业长期梦寐以求的目标,并向世人展示了其良好的应用前景,虽然短时间内难以大规模商业化,但我国在燃料电池技术开发上仍然拥有一定的优势,应当结合外国先进的汽车制造技术,争取尽快将燃料电池汽车推向市场,因而具有广阔的投资潜力。