导航:首页 > 股市分析 > 单晶金刚石形貌分析

单晶金刚石形貌分析

发布时间:2021-06-11 02:27:14

『壹』 人造金刚石单晶的介绍

用石墨粉料及合金触媒剂(Ni-Cr-Fe、Ni-Fe-Mn、Ni C0、Ni-Cr、Ni-Mn)在高温(13000C),高压(5000兆帕)压力以上的条件下,重新结晶生长的金刚石称人造金刚石单晶。单晶的合成方法多用静压触媒法(也有爆破法)。高压是通过液压机,如六面顶压机从相互垂直的6个方向同时向位于中心的立方体试样施加压力;高温是以交流电或直流电通过石墨试样加热产生的。人造金刚石单晶的高强度,才能用作制造孕镶金刚石钻头,钻进中硬地层;强度更高的方可制作硬及坚硬地层用的孕镶金刚石钻头。人造金刚石单晶的粒度都较小,其大颗粒(>100目)的用作孕镶钻头;微粉级的,则用作研磨膏,在机械制造及建材业中广泛应用。

『贰』 金刚石既然是单晶体,单晶体是一个晶粒,金刚石就是一个晶粒组成的,为什么金刚石会有大小之分

单晶也有大小之分,普通单晶比较小,一般不到1mm,但特殊条件下也可以长出大块的单晶来,比如电子工业用的单晶硅。金刚石生长条件不同,晶粒大小自然不同,大的晶粒罕见,因此价格高。

『叁』 金刚石单晶,聚晶与多晶如何识别

有这么几方面区别:

1.生产方法上:单晶金刚石是石墨经六面顶压机合成;多晶金刚石是经过爆炸法合成;聚晶金刚石只是把单晶金刚石与结合剂在高温高压下烧结而成的金刚石聚合物。


2.从微观结构上看:多晶金刚石比单晶金刚石有更多的晶棱和磨削面,在抛光过程中每条晶棱都具有磨削力,并且粗颗粒在磨削过程中会破碎成更小的颗粒脱落,这样既可以保持持续的磨削力,又不易造成划伤。


3.多晶金刚石所具备的结构优势,使其可以广泛应用于蓝宝石衬底、光学晶体、电子行业等的研磨抛光。

『肆』 晶体形貌特征

澳大利亚东部地区Group B类型砂矿金刚石/钻石晶形为伸长或扁平状的不规则和规则的十二面体,表面很少具有绿色和棕色色斑(Davies et al.,1999,2002);加里曼丹砂矿少量金刚石/钻石呈非常醒目的明亮琥珀色,部分金刚石/钻石显示独特的“Diver's Helmet”形貌,明显缺失破碎或裂开的晶体,具与搬运相关的磨损特征的金刚石/钻石比例很低(Smith et al.,2009);乌拉尔山脉较其他砂矿矿区,含有较多透明的绿色皮壳金刚石/钻石,晶形以扁平的十二面体为主(Laiginhas,2008);缅甸和泰国的砂矿金刚石/钻石表面色斑以褐色为主,绿色色斑少见(Win et al.,2001;Griffin et al.,2001)。

图8.52 印度尼西亚加里曼丹岛金刚石的形貌(b 为特殊的“Diver’s Helmet”形貌)

( 据 Smith et al.,2009)

Figure 8.52 Morphology of diamond from Kalimantan,Indonesia (b,the special Diver’s Helmet appearance)

(Smith et al.,2009)

图8.53 印度尼西亚加里曼丹岛金刚石的内部结构特征

( 据 Smith et al.,2009)

Figure 8.53 Internal structure of diamond from Kalimantan,Indonesia

(Smith et al.,2009)

表8.14 世界主要砂矿来源金刚石/钻石产地特征综合比较Table 8.14 Comparison of diamond origin characteristics of major alluvial deposits all over the world

据 Davies et al .,1999,2003;Sobolev,1984;Smith er al.,2009;Stachel et al.,2000a;2000b,2002;Cartigny et al.,2004;Harris et al.,2004;Win et al.,2001;Griffin et al.,2001;Bluck et al.,2005;Khachatryan & Kaminsky,2003;Laiginhas,2008;杨明星等,2001;马文运,1989;郭九皋,1989;杨明星,2000文献整理

『伍』 世界不同地区金刚石/钻石晶形、颜色及表面形貌特征

世界不同地区出产的金刚石/钻石,在晶形、完整性、颜色类型及其比例等统计学特征上有一定的差异,这种差异是商业上进行产地区分经验的来源。

但是根据世界不同国家和金刚石/钻石矿区开采历史资料的对比(见附表2),可以看出世界各国以国家作为比较对象来进行比较是非常困难的(甚至是错误的),同一个国家不同矿区之间也存在明显的差异;但从不同的矿区来看,根据其金刚石/钻石最常见晶形的类型至少可以归纳为如下几类(不考虑历史因素):

(1)由八面体金刚石/钻石为主的矿区,包括北美克拉通加拿大Slave克拉通的Jericho、Ekati、Diavik矿区;东西伯利亚克拉通俄罗斯雅库特金刚石/钻石成矿省Malo-Botuobia地区,津巴布韦克拉通Murowa和Sese 矿区;中国华北克拉通辽宁瓦房店42号岩管。

(2)菱形十二面体为主的矿区,包括北美克拉通加拿大Superior省Renard矿区;巴西;俄罗斯东欧克拉通(太古宙Kola克拉通)M.V.Lomonosov矿区;东西伯利亚克拉通俄罗斯乌拉尔地区砂矿;西非克拉通几内亚Kankan地区;南澳克拉通/澳大利亚艾伦代尔(Ellendale矿区,中国华北克拉通辽宁50号岩管,山东蒙阴。

(3)八面体和菱形十二面体比例近似的矿区,包括北美克拉通加拿大Superior省Wawa矿区;俄罗斯东欧克拉通(太古宙Kola克拉通)V.Grib原生矿,中非克拉通安哥拉的Catoca field ;中国湖南沅水流域金刚石/钻石砂矿。

(4)出现较多异形金刚石/钻石的矿区,包括北美克拉通加拿大Superior省Lynx矿区,Alberta省Buffalo Head Hills矿区;中非克拉通/刚果(扎伊尔)以及Kaapvaal克拉通南非、博茨瓦纳,Pilbara北澳克拉通阿盖尔(Argyle),南澳克拉通Orroroo(Eurelia)原生金伯利岩和Springfield Basin砂矿;新南威尔士Bingara砂矿、Copeton砂矿、Wellington砂矿、Airly Mountain砂矿A组等。另外,还有Kaapvaal克拉通纳米比亚砂矿和西非克拉通坦桑尼亚Mwai矿没有见到可靠的晶形统计资料。

上述分类还可以按照是否明显出现立方体形金刚石/钻石和不出现立方体金刚石/钻石分两大类。一是明显出现立方体金刚石/钻石的矿区包括:北美克拉通加拿大Slave克拉通的Diavik矿区;北美克拉通加拿大Superior省Wawa矿区,Alberta省Buffalo Head Hills矿区;东西伯利亚克拉通俄罗斯雅库特金刚石/钻石成矿省Udachnaya岩管;中非克拉通安哥拉Catoca field矿区,塞拉利昂的Koi矿区;Kaapvaal克拉通南非的Venetia矿区;博茨瓦纳Orapa和Jwaneng;津巴布韦克拉通Murowa和Sese;南澳克拉通Eurelia矿区,中国湖南沅水流域的砂矿。二是明确没有出现或者少见立方体及其聚形金刚石/钻石的矿区,只有Kaapvaal克拉通南非普列米尔和北澳克拉通阿盖尔(Argyle)。其余的地区可能是没有发现或者数量较少,因此没有提及。

金刚石/钻石晶形是金刚石/钻石形成过程环境条件的综合反映(ЮЛ奥尔洛夫等,1977;Haggerty,1986;Besk等,1989;黄蕴慧等,1992;池际尚等,1996),具有复杂晶体形态的矿区通常是结晶条件复杂,物理化学条件或者流体供应变化比较大(伊. ПФ等,1989;陆太进等,2011; Kriulina et al.,2011),金刚石/钻石在形成后受到过明显的塑性变形或强烈的溶蚀也可能造成金刚石/钻石晶形强烈的变形(例如,Udachnaya岩管和华北克拉通山东蒙阴金刚石/钻石矿区)(Chapman,1996;Lu et al.,2001)。而立方体及其聚型最容易出现在高温高压合成金刚石/钻石中,天然金刚石/钻石中出现的比例往往较少,如果某些矿区大量出现这种形态的金刚石/钻石实际上也反映了该矿区金刚石/钻石的形成条件和其他矿区有明显的差异(Kaminsky et al.,2009)。

金刚石/钻石表面色斑很多时候是金刚石/钻石周围环境中存在放射性物质形成的(马文运,1989;Harris,1992),多数经历过搬运和再沉积的砂矿金刚石/钻石表面往往存在绿色或者褐色的色斑(杨明星等,2002),但在某些原生矿的金刚石/钻石中也有色斑的存在(De Stefanol et al.,2008,2009;Hunt et al.,2008),因此,色斑是金刚石/钻石一种具有来源标型性的特征之一。根据不同金刚石/钻石矿区金刚石/钻石表面是否存在色斑可以将金刚石/钻石分为两大类,有色斑的和无色斑的,前者产地通常比较少见。

出现色斑的产地主要包括:北美克拉通加拿大Slave克拉通的Jericho矿区,该地绿色金刚石表面具有暗绿色圆形色斑;北美克拉通加拿大Superior省Renard矿区部分金刚石/钻石也具有绿色色斑;巴西Amazonian克拉通,Sao Francisco克拉通和Rio De La克拉通金刚石/钻石砂矿的金刚石/钻石大多具有色斑,并且绿色和棕色色斑出现的比例接近,例外的只有Juina地区Rio Soriso矿区;乌拉尔地区砂矿金刚石多数具有褐色或绿色的色斑;中非克拉通安哥拉Catoca field矿区的金刚石/钻石带特别的橙斑和黑斑,而津巴布韦克拉通的金刚石/钻石常具有特征的红色色斑;南澳克拉通新南威尔士金刚石/钻石砂矿金刚石/钻石30%有绿色和褐色的斑点,同样这种特征也出现在印尼加里曼丹和中国湖南沅水流域以及山东砂矿来源金刚石/钻石中。砂矿中不出现色斑的是巴西Juina地区Rio Soriso矿区的金刚石/钻石,它们很少见到有绿色和棕色色斑的出现。

『陆』 三个产地钻石表面微形貌特征的成因及其产地意义

本项目收集了三个产地1077颗钻石进行了系统的观察、测试和统计(观察过的钻石超过10000颗),可以说是历年来统计数量最多和最为系统的一次,其结果在一定程度上可以反映我国三大产地来源的钻石(原生与砂矿)晶体的形态及表面形貌的特征及其差异。

钻石在地幔深部结晶完成后,经金伯利岩或者其他相关岩石带出岩石圈,由于受压力、温度和浓度等环境因素变化的影响,钻石会受不同程度的变形或熔解,其晶体及晶面上就会出现很多大小不同的裂隙和熔解蚀象。在强烈熔解甚至应变的过程中,钻石晶体受压力差异的影响也会出现和应变及塑性变形有关的蚀象。如果钻石在岩石中风化脱落经历复杂的搬运过程,搬运条件不稳定和发生改变,晶面上还会叠加很多大小不同、规则或不规则的碰撞磨蚀蚀象。因此,钻石表面的蚀像实际上是钻石形成时和形成后环境物理化学条件改变留下的痕迹。

在熔蚀作用过程中,晶棱、顶角与岩浆的作用大于晶面,因此熔蚀程度往往大于晶面,其中顶角由于只有二个键与晶体联结,岩浆中熔蚀程度大于由3个键与晶体联结的晶棱,因此,大多钻石会呈现圆滑的而不是平直的晶面。

日本著名结晶学家砂川一郎等(1983)对不同生长条件下的金刚石晶体形态和晶面特征进行过详细研究后指出:具有正三角形生长层阶梯状的八面体钻石形成于自然界稳定的温压条件下,其温度范围为1000~1600℃,压力范围在4×108~50×108Pa。国内学者郑建平、杨明星、陈美华等人对金刚石的微形貌进行观察后认为,金刚石的形成具有多期多阶段的特点(郑建平等,1996;2001;陈美华等,1999;2000;2006;杨明星等,2000;2001)。山东和辽宁金伯利岩型钻石原生矿均位于华北地台,因此两地钻石样品表面形貌特征十分接近。但是从两个产地样品形态特征看,山东钻石出现变形非常强烈的拉长的塑性变形纹,辽宁地区塑性变形线大多不规则,发生强烈的变形弯曲,排列也不规则,而山东金刚石样品的塑性变形线大多平直,且呈平行状排列。这说明辽宁地区钻石发生塑性变形的程度较山东地区的略强。

前人研究了乌拉尔和西伯利亚砂矿钻石后指出,金刚石晶体上明显的机械磨蚀痕迹和晶体空洞、蚀沟中存留的围岩粘结物,标志着现代砂矿钻石的来源为古老的砾岩,而不是原生岩浆(奥尔洛夫,1977);Kaminsky等(Kaminsky et al.,2009)。对比来自巴西Juina地区Pandrea金伯利岩管中的钻石与该地区砂矿床钻石的晶形时,发现两者在类型上具有相似性,但是在定量对比上则可以发现其差异,主要体现在砂矿钻石中八面体晶体的数量是岩管钻石的2~3倍,这表明Juina地区砂矿钻石的来源除了已知的Pandrea金伯利岩管外,应该在该区还有别的未知的钻石原生矿。我国湖南沅水流域钻石大多数为浑圆程度高的晶体,晶棱和蚀像都显示变形的弧形曲面形态,这种特征显示出钻石形成过程中经历了较长时间的熔蚀,同时晶面上具有差异硬度导致的各种形式的磨蚀和撞击痕,和湖南钻石经历过后期河流冲刷搬运的特点相对应;但是大多数湖南钻石表面的熔蚀像清晰,晶体被磨蚀程度低,表明钻石被河流搬运的距离较小、距离原生矿较近。值得一提的是,湖南地区钻石晶体存在各种颜色的色斑,部分有色斑的位置放大观察可发现有放射状的“弯月状”蚀象,这可能和色斑的辐照成因相关。此外,“弯月状”蚀象也可以考虑作为砂矿成因钻石的辅助性鉴定特征。

『柒』 单晶金刚石质量检验

目前,单晶金刚石质量检验的指标为:抗压强度、晶体形态、热稳定性、粒度、抗冲击韧性等。

一、金刚石单颗粒抗压强度的测定

测定时,把金刚石视为等积形的小立方体,测量其能承受的最大垂直压力(即破碎压力)作为其抗压强度,开始用公斤·力/平方厘米表示,现在直接用“公斤”数来表示。

采用的仪器为单颗粒抗压强度测定仪,其结构见图2-12-1,其工作原理为杠杆原理。

具体操作时方法是:用标准筛筛取某粒度号金刚石,用“四分法”镊取适当量的样品,置于玻璃板上,排长长的一排(颗粒间不重叠),不得挑选,均匀间隔地取40粒样,将金刚石放在压块上,将压头压在金刚石上,然后慢慢加载(移动游砣),直至压碎为止。

计算时,先求出40粒负荷值的算术平均值,核对各粒负荷值,凡超过平均值一倍者舍去,余数再按公式求平均值,即为该样强度值。

碎岩工程学

式中:P为单颗粒强度值,kg;Qi为每粒金刚石破碎负荷,kg;40为测量颗粒数;n为负荷超过平均值1倍的颗粒数。

图2-12-1 单颗粒抗压强度测定仪

二、晶体形态测定

金刚石晶形的好坏,标志着金刚石质量的好坏,并直接影响使用效果。

检查项目包括:等积形、完整单晶形、非完整单晶形、无定形单晶体、聚晶体和连晶体。

等积形是指长、短轴之比不大于1.5∶1;完整单晶形,是指晶面完整无熔蚀现象;非完整单晶形是指晶面不完整,有严重熔蚀现象;无定形单晶体:如剑尖、扁条状或树枝状;聚晶是很多微小单晶体聚合在一起;连晶是两个或两个以上不完整单晶体生长在一起。

分析方法:采用四分法取样,逐个用实体显微镜观察,分析量不少于1000粒;然后计算各种晶形所占百分数。

例如,对于JR3品级:等积形金刚石不得低于观察总数的80%;完整晶形占12%;连聚晶体不大于3%。

三、热稳定性测定

热稳定性值一般以温度来表示。金刚石的热稳定性,即在某温度下金刚石失去原有的性能。热稳定性的测定有如下两种方法:

1.金刚石在空气中的热稳定性测定

利用MH02型高温显微镜进行测定的。测定时,首先将试样放在卧式管状加热炉内,边升温边观察,随着温度升高至金刚石表面碳化温度,金刚石透明度消失,随后晶棱上出现锯齿状的毛刺,此时记录下的温度值,以表示金刚石的热稳定性。

2.在保护气氛下的热稳定性测定

加热时,向加热炉内通入氮氢保护气体(N2+H2),从700℃开始至1300℃止,每升高100℃保温半小时,待冷至室温后,将试样取出进行单颗粒抗压强度测定,以某温度下的抗压强度值表示金刚石的热稳定性。

四、粒度检查

人造金刚石磨料,根据其颗粒尺寸大小不同,分为磨粒和微粉两大类:前者用筛分法检查,后者用显微镜观察。

1.筛分法

根据试样粒度选用标准筛,按粒度检查取样,筛分时间规范(表2-12-1),称取一定数量洁净的试样,倒入最上层筛网中。筛分后对各层筛上物分别称重,并算出粒度组成的质量分数。

表2-12-1 粒度检查取样、筛分时间规范

例如,对于定为80目金刚石,要求:①100%通过70目的筛网;②80目网上的金刚石,不大于5%(按质量计);③100目网上的金刚石,不小于85%;④120目网上的金刚石,不小于9%;⑤通过120目网上的金刚石不大于1%。

2.显微镜法

主要用来检查金刚石细于W40的微粉。微粉共分12个等级:从W0.5~W40,0.5、40为微粉颗粒尺寸,单位为微米(μm)。

显微镜法用的主要仪器为:1500X生物显微镜、电动求积仪和目镜测微尺。

检查方法:取少量试样置于器皿中,滴入适量的甘油拌匀,用玻璃棒粘一小滴于玻璃板上,使试样均匀摊开;选择好显微镜的放大倍数(对于W3.5及以细),采用1000×~1500×;对于W5~W14,采用600×~800×;对于W20~W40,采用150×~300×。检查有否大颗粒存在、粒度是否均匀、细粒是否过多。被检查颗粒总数不小于500粒。

如发现有大颗粒存在,可作为不合格样品处理。

例:对于W40微粉,小于20μm颗粒不大于10%;对于W10微粉,小于5μm颗粒不大于10%。

五、抗冲击性能

过去对超硬磨料(包括金刚石)的测试,仅停留在静载上,而超硬磨粒在工作中往往承受动载。因此,很有必要对超硬磨料进行抗动载(或抗冲击)性能的测试。但该测试有一定的难度,至今无统一标准。国内外虽有些可测的仪器,但测出的数据大多为“当量强度”,反映不了真正的强度值。

测试方法较多,仅举几例加以说明。

1.球磨法

是将金刚石样品与钢球放在容器内随机撞击和研磨一定时间后,观察样品破碎程度的大小,并以保持原尺寸颗粒的百分数(当量强度)作为测试指标。

美国、日本均有此类仪器,它用于磨料行业比较合适。

2.辊碎法

用于辊碎法的辊轮装置,见图2-12-2所示。它是由主动辊轮、从动辊轮、电机、应变片等组成,辊轮用硬质合金制作,两个辊轮之间间隙可以调正。

图2-12-2 辊轮装置示意图

磨粒由振动送料器送入,当磨粒通过间隙时,受到两辊轮的挤压而破碎,破碎力的信号由应变片转换成电信号,经放大后,输入单板机进行处理,然后显示并打印(见信号处理系统图2-12-3)。该装置是以破碎力表示抗冲击性能。

图2-12-3 信号处理系统图

3.落锤法

落锤法是利用一个冲锤自由下落所产生的冲击力来砸碎金刚石颗粒。冲击力由压电石英传感器接受变成电量,经电荷放大器放大后,输入微机显示和打印。

落锤装置结构简单(图2-12-4),它由电磁线圈、冲锤、压电石英传感器、底座等组成。工作时,接上直流电靠电磁吸合原理即能使冲锤上下。

图2-12-4 落锤装置示意图

落锤法的最大优点是,能直接测出冲击力和冲击功,便于钻探行业应用。但该法的致命弱点是,测量的不连续性,导致存在测量误差和操作不方便。

原长春地质学院勘察工程系在该落锤装置上增加了一个“吸能装置”,即一次就能测出金刚石的抗动载性能,剩余的能量被“吸能装置”所吸收,这就克服了落锤法的弱点,提高了测试正确性,加快了测试速度。

『捌』 单晶金刚石刀具的单晶金刚石的物理特性

金刚石是单一碳原子的结晶体,其晶体结构属于等轴面心立方晶系(一种原子密度最高的晶系)。由于金刚石中碳原子间的连接键为sp3杂化共价键,因此具有很强的结合力、稳定性和方向性。它是目前自然界已知的最硬物质,其显微硬度可达10000HV,其它物理特性见以下内容。 物理性能-数值
硬度-60000~100000MPa,随晶体方向和温度而定
抗弯强度-210~490MPa
抗压强度-1500~2500MPa
弹性模量-(9~10.5)×10的12次方MPa
热导率-8.4~16.7J/cm·s·℃
质量热容-0.156J/(g·℃)(常温)
开始氧化温度-900~1000K
开始石墨化温度-1800K(在惰性气体中)
和铝合金、黄铜间的摩擦系数-0.05~0.07(在常温下) 由于单晶金刚石本身的物理特性,切削时不易黏刀及产生积屑瘤,加工表面质量好,加工有色金属时,表面粗糙度可达Rz0.1~0.05μm。金刚石还能有效地加工非铁金属材料和非金属材料,如铜、铝等有色金属及其合金、陶瓷、未烧结硬质合金、各种纤维和颗粒加强复合材料、塑料、橡胶、石墨、玻璃和各种耐磨木材(尤其是实心木和胶合板、MDF等复合材料)。

『玖』 金刚石晶体结构特征是什么

金刚石结构又称为金刚石立方晶体结构(diamond cubic lattice structure),原型是金刚石。金刚石结构中的每个原子与相邻的4个原子形成正四面体,故单胞内原子数为5。具有金刚石结构的晶体除了金刚石以外,还有硅、锗、α-锡等。

金刚石结构的原型是金刚石晶体,又称钻石。在金刚石晶体中,每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于金刚石中的C-C键很强,所以金刚石硬度大,熔点极高;又因为所有的价电子都被限制在共价键区域,没有自由电子,所以金刚石不导电 。

(9)单晶金刚石形貌分析扩展阅读:

金刚石晶体性质

金刚石结构的原型是金刚石的晶体结构。在金刚石晶体中,每个碳原子的4个价电子以sp3杂化的方式,形成4个完全等同的原子轨道,与最相邻的4个碳原子形成共价键。这4个共价键之间的角度都相等,约为109.28度,这样形成由5个碳原子构成的正四面体结构单元,其中4个碳原子位于正四面体的顶点,1个碳原子位于正四面体的中心。

因为共价键难以变形,C-C键能大,所以金刚石硬度和熔点都很高,化学稳定性好。共价键中的电子被束缚在化学键中不能参与导电,所以金刚石是绝缘体,不导电。

『拾』 金刚石/钻石包裹体的形貌特征

本文利用实体显微镜和微分干涉显微镜对83片山东、63片辽宁和134片湖南砂矿钻石薄片中的包裹体进行显微放大观察,采用的仪器分别为中山大学地球科学系岩矿显微鉴定室和西北大学地质系特种显微镜室的实体显微镜(型号分别为Nikon SMZ1000和Nikon SIMZS00)、国家珠宝玉石质量监督检验中心的微分干涉显微镜(型号为Nikon LV100),结果如下:

6.2.2.1 常见包裹体的形貌特征

三产地的钻石中橄榄石包裹体出现的频率较高,在辽宁发现13颗,山东发现18颗,湖南发现14颗,出现频率在分析的钻石样品中分别为20.6%、21.7%和10.4%。橄榄石包裹体大多数为无色透明的浑圆球状、柱状晶体(图6.1,图版Ⅵ)。湖南钻石中的橄榄石还具有哑铃状外形,哑铃状橄榄石显示浑圆的外形,晶体一头大一头小,中部线状内凹收窄,周围派生片状的内部裂隙和微裂纹(图6.2);山东钻石中还出现有钉头状橄榄石(图版Ⅵ)。橄榄石周围常环绕黑色石墨包裹体,部分晶体与石墨、裂隙相连接(图6.3,图版Ⅵ),辽宁钻石中的橄榄石包裹体晶面上还有细密的蚀像(图6.4),在山东和湖南钻石中的多颗橄榄石包裹体晶面上都发现有黑色石墨斑点的覆盖,如山东钻石23-SD-02的橄榄石晶体的部分晶面布有细小的黑色斑点,湖南钻石146-HN-01-A中三颗橄榄石包裹体晶面上都覆盖有黑色斑点(图6.5,图版Ⅵ)。石墨斑点以薄膜状覆盖在橄榄石的晶面上,同时对所在橄榄石晶体的拉曼测试造成影响。石墨斑点或分散或密集地在部分晶面上和晶棱上存在,斑点个体大多数呈拉长椭圆形,个体间沿拉长方向平行排列,拉长方向大致与包裹体晶体的延长、变形方向或晶体被熔蚀方向一致,如湖南钻石样品802-7中球状橄榄石晶面和晶棱上都有黑色拉长石墨斑点,晶棱上的石墨在熔蚀凹槽内出现,斑点整体平行排列(图6.6,图版Ⅵ);共生于同一钻石中的橄榄石上的石墨斑点在相同方向的晶面上出现,并且各个橄榄石晶体上斑点的拉长方向一致(图版Ⅵ)。

表6.3 中国钻石包裹体的类型特征统计表Table 6.3 Statistics of inclusion types of diamonds in China

图6.1 山东钻石中的短柱状橄榄石

(样品23-SD-02,微分干涉显微镜下,500×)

Figure 6.1 Short columnar olivine inclusion in Shandong diamond

(sample 23-SD-02,Differential Interference Contrast Microscope,500×)

图6.2 湖南钻石中哑铃状橄榄石及周围的片状裂隙

(样品802-6-2,微分干涉显微镜下,100×)

Figure 6.2 Dumbbell-shaped olive inclusion with sheet fissure surrounded in Hunan diamond

(sample 802-6-2,Differential Interference Contrast Microscope,100×)

图6.3 湖南钻石中的橄榄石包裹体、状裂隙及其内的石墨

(样品177-HN-01,微分干涉显微镜下,500×)

Figure 6.3 Olivine inclusion and sheet fissure with graphite in Hunan diamond

(sample 177-HN-01,Differential Interference Contrast Microscope,500×)

图6.4 辽宁钻石中橄榄石包裹体晶面上布满蚀像

(样品3-LW-03,微分干涉显微镜下,500×)

Figure 6.4 Olivine inclusion fully covered with etched figures in Liaoning diamond

(sample 3-LW-03,Differential Interference Contrast Microscope,500×)

图6.5 湖南钻石中橄榄石包裹体上平行成行排列的黑色石墨

(样品146-HN-01-A,微分干涉显微镜下,500×)

Figure 6.5 Olivine inclusion covered with parallel graphite in Hunan diamond

(sample 146-HN-01-A,Differential Interference Contrast Microscope,500×)

图6.6 湖南钻石中橄榄石上定向拉长的石墨斑点

(样品802-7,微分干涉显微镜下,100×)

Figure 6.6 Olivine inclusion covered with oriented elongated graphite in Hunan diamond

(sample 802-7,Differential Interference Contrast Microscope,100×)

在三个产地的钻石中发现有两种类型的石榴子石:镁铝榴石和镁铝-铁铝榴石。

辽宁钻石中发现的镁铝榴石主要为灰白色拉长柱状(图6.7,图版Ⅵ),晶棱圆滑,周围有大量黑色包裹体,其中一个大型的黑色包裹体呈厚片状分布,放大观察可见其中包裹大量的浑圆晶体(图6.8,图版Ⅵ),同时在该钻石中分布许多熔蚀长轴状未准确鉴定的晶体;镁铝-铁铝榴石包裹体十分细小,以浑圆状晶体分布于大片状的内部裂隙和黑色石墨包裹体中,难于仔细观察(图版Ⅵ)。

图6.7 辽宁金刚石/钻石中拉长柱状镁铝榴石

(样品8-LW-02,实体显微镜下,250×)

Figure 6.7 Elongated columnar pyrope inclusion in Liaoning diamond

(sample 8-LW-02,Stereomicroscope,250×)

图6.8 厚片状黑色裂隙中浑圆晶体群

(样品8-LW-02,微分干涉显微镜下,200×)

Figure 6.8 Rounded crystal group in thick and black sheet fissure

(sample 8-LW-02,Differential Interference Contrast Microscope,200×)

辽宁钻石中的石榴子石包裹体周围有大量浑圆晶体包裹体,种类有辉石族矿物和其他镁铝榴石以及未确定的矿物(图6.9),晶体包裹体彼此之间都或近或远地独立分布。

山东钻石中镁铝榴石包裹体以紫色为主,呈现中间收小的哑铃状、葫芦状和复杂晶形的浑圆晶体(图6.10,图版Ⅵ),晶体周围黑色石墨包裹体较少,多是浑圆的晶体包裹体,镁铝榴石包裹体没有与裂隙连通,较为独立。山东钻石样品23-SD-02的哑铃状镁铝榴石显示出层状结构,晶体内部为紫色,外部则为无色透明(图6.11);镁铝-铁铝榴石包裹体有紫色、黄褐色和无色(图版Ⅵ),晶体外形基本完整,部分晶体的晶面上有黑色斑点、红色斑块和三角锥状蚀像(图6.12):其中黑色斑点所在的晶面显示面平棱直的形态,可判断此晶面是受外力导致的破裂面,非熔蚀过程导致,斑点为六边形,与所在晶面的形状一致,且取向和所在晶面一致,判断黑色斑点是在石榴子石破裂面生成后形成的,为后生成因;红色斑块外形多变,多散布在晶体的边棱,向中部减少,对周围的一颗熔蚀状晶体上的红色斑块的拉曼测试结果为黄铜矿,推测石榴子石上的红色斑点应为同样生长环境下的同种物质;三角锥状蚀像密集在一晶面上。根据镁铝-铁铝榴石的形貌特征可判断钻石247-SD的生长经历了外力撞击和后期熔蚀的过程,显示该区金伯利岩浆在上升侵位过程中钻石发生再结晶作用。

湖南钻石中的镁铝榴石包裹体为无色透明晶体,呈拉长浑圆状四角三八面体,常独立分布,很少与裂隙连通,晶体周围还常常有其他种类的浑圆晶体包裹体存在,如样品150-HN-01中3颗分散的镁铝榴石包裹体,包裹体显示浑圆拉长晶体(图6.13);镁铝-铁铝榴石有拉长柱状晶形,还发现有钉头状外形,白色钉头状晶体有单独分布,也有成行分布(图6.14)。

辽宁钻石中的顽火辉石包裹体呈无色,浑圆拉长变形晶体,晶体两端大小不一(图6.15),周围伴有裂隙和黑色包裹体。

山东钻石中辉石族矿物种类包括镁铁辉石、顽火辉石和绿辉石,为无色透明柱状浑圆晶体,环绕辉石包裹体周围的钻石内呈现明显的应变异常双折射现象(图6.16,图版Ⅵ),长柱状辉石晶体的平坦晶面上呈现小阶梯状(图6.17)。辉石包裹体周围有大量黑色云朵状包裹体和大量的晶体包裹体,种类包括绿辉石和石榴子石(图版Ⅵ)。

图6.9 辽宁钻石中的橄榄石和石榴子石包裹体

(样品LN-50-037B,微分干涉显微镜下,50×)

Figure 6.9 Olivine and garnet inclusions in Liaoning diamond

(sample LN-50-037B,Differential Interference Contrast Microscope,50×)

图6.10 山东钻石中的镁铝榴石

(样品247-SD-01,微分干涉显微镜下,500×)

Figure 6.10 Pyrope inclusion in Shandong diamond

(sample 247-SD-01,Differential Interference Contrast Microscope,500×)

图6.11 山东钻石中紫色哑铃状镁铝榴石

(样品23-SD-02,微分干涉显微镜下,200×)

Figure 6.11 Purple and mbbell shaped pyrope inclusion in Shandong diamond

(sample 23-SD-02,Differential Interference Contrast Microscope,200×)

图6.12 山东钻石中浅黄色镁铝-铁铝榴石晶面上的黑色六边形斑点(右部)、拉长的三角形蚀像(左部)和红色斑块(中下部)

(样品247-SD-01,微分干涉显微镜下,500×)

Figure 6.12 Light yellow pyrope-almandine inclusion with black hexagon spots (right),elongated triangular etched figures (left) and red patches (lower center)

(sample 247-SD-01,Differential Interference Contrast Microscope,500×)

图6.13 湖南钻石样品150-HN-01中的镁铝榴石包裹体

Figure 6.13 Pyrope inclusion in Hunan diamond,sample 150-HN-01

图6.14 湖南钻石中的镁铝-铁铝榴石包裹体

Figure 6.14 Pyrope-almandine inclusion in Hunan diamond

图6.15 浑圆拉长变形的顽火辉石

(样品8-LW-01,拉曼探针显微镜下实测图)

Figure 6.15 Rounded,elongate and distorted enstatite

(sample 8-LW-01,Raman Microscope on-the-spot figure)

图6.16 浑圆状绿辉石及其周围的异常双折射现象

(样品247-SD-01,微分干涉显微镜下,500×)

Figure 6.16 Rounded omphacite with anomalous birefringence effect

(sample 247-SD-01,Differential Interference Contrast Microscope,500×)

图6.17 长柱状辉石,平行柱状体有阶梯纹理

(样品247-SD-02微分干涉显微镜下,200×)

Figure 6.17 Long columnar pyroxene with parallel stepped veins

(sample 247-SD-02,Differential Interference Contrast Microscope,200×)

湖南钻石中辉石族包裹体种类有顽火辉石、镁铁辉石和绿辉石。晶体为无色透明,呈浑圆状,晶形多样,有柱状、板状、膝状和针管状形态,平行晶体延伸方向常具有阶梯状纹理(图6.18,图版Ⅵ)。辉石包裹体在钻石中都是单独存在,部分晶体周围延伸微小的裂隙。如钻石样品802-2中的膝状的顽火辉石,周围延伸出细小羽状片状裂隙(图6.19),一个方向上显示浑圆光滑晶面,相对方向上则显示规则阶梯状晶面。在一颗绿辉石包裹体晶面上发现有黑色石墨斑块(图6.20),斑块在两个相对的晶面上存在,没有方向性,说明包裹体经历的温压环境改变不具定向性,这与包裹体本身的原始晶形较完整相一致。在一个针管状孔道的不同位置(样品802-7)测出绿辉石的拉曼峰,同时还测出氮气和石墨,此管道延伸至钻石晶体表面,管道的内壁为面棱状,底部呈尖灭状(图6.21)。

6.2.2.2 特殊形貌特征的包裹体

图6.18 湖南钻石中的顽火辉石包裹体,平行柱状体有阶梯纹理

(样品127-HN,微分干涉显微镜下,500×)

Figure 6.18 Enstatite inclusion with parallel stepped veins in Hunan diamonds

(sample 127-HN,Differential Interference Contrast Microscope,500×)

图6.19 湖南钻石中的顽火辉石包裹体

(样品802-2,微分干涉显微镜下,500×)

Figure 6.19 Enstatite inclusion in Hunan diamond

(sample 802-2,Differential Interference Contrast Microscope,500×)

在研究的山东和湖南钻石多颗晶体包裹体上都附着黑色斑纹,包裹体种类包括橄榄石、镁铝榴石、镁铝-铁铝榴石、绿辉石和柯石英,各种包裹体晶体上的斑纹形态见图版Ⅵ,利用原位微区激光拉曼技术分析确定包裹体上的黑色斑点为石墨。分析发现,石墨大多数聚集成斑点状、条带状覆盖在包裹体的晶面上,但并不是在每个晶面上都存在,往往沿着拉长变形的晶面和受熔蚀的方向分布:石墨斑点个体大多数呈细长椭圆形,沿拉长方向平行排列,拉长方向大致与包裹体晶体的延长方向、变形方向或晶体被熔蚀方向一致,如样品802-7中的橄榄石包裹体的晶棱被熔蚀呈平行沟渠状,被拉长的石墨斑从熔蚀沟内延伸到晶面上(图6.22),但也有呈与包裹体晶形相同的形态,如247-SD-01中镁铝-铁铝榴石包裹体部分晶面上的六边形黑色斑点(图6.23),与所在晶面的形状一致,且取向和所在晶面一致;条带状的石墨沿着包裹体晶体延长方向分布,与晶棱平行(图6.24);也有的石墨呈非定向的分散斑块状在大晶面上分布,如样品801-11中的绿辉石包裹体上的石墨斑块(图6.25)。依此推断这些石墨斑点应该为晶体包裹体形成后,由于外部环境温压条件的变化产生,与所存在的包裹体种类无关。

图6.20 湖南钻石中的绿辉石包裹体,其上有石墨斑点

(样品801-11,微分干涉显微镜下,500×)

Figure 6.20 Omphacite inclusion with graphite spots in Hunan diamond

(sample 801-11,Differential Interference Contrast Microscope,500×)

图6.21 湖南钻石中的针管状包裹体,管内测出绿辉石

(样品802-7,微分干涉显微镜下,100×)

Figure 6.21 Tubular inclusions detected as omphacite in Hunan diamond

(sample 802-7,Differential Interference Contrast Microscope,100×)

图6.22 湖南钻石中的橄榄石包裹体,其上有拉长定向的黑色石墨

(样品802-7,微分干涉显微镜下,500×)

Figure 6.22 Olivine inclusion covered with elongated black graphite in Hunan diamond

(sample 802-7,Differential Interference Contrast Microscope,500×)

图6.23 山东钻石中的镁铝-铁铝榴石包裹体,其上有六边形黑色斑

(样品247-SD-01,微分干涉显微镜下,200×)

Figure 6.23 Pyrope-almandine inclusion covered with hexagon black spots in Shandong diamond

(sample 247-SD-01,Differential Interference Contrast Microscope,200×)

图6.24 辽宁钻石中的镁铝榴石包裹体,其上有石墨附着

(样品LN-50-037B(1-1),微分干涉显微镜下,100×)

Figure 6.24 Pyrope inclusion covered with graphite in Liaoning diamond

(sample LN-50-037B (1-1),Differential Interference Contrast Microscope,100×)

图6.25 湖南钻石中的绿辉石包裹体,其上有石墨斑块

(样品801-11,微分干涉显微镜下,500×)

Figure 6.25 Omphacite inclusion covered with graphite patches in Hunan diamond

(sample 801-11,Differential Interference Contrast Microscope,500×)

另外,在4片湖南钻石薄片样品802-3-1、802-3-2、802-7和111-HN-02以及一片山东钻石样品42-SD-01中都观察到针管状溶蚀孔道,它们在金刚石/钻石中呈一个方向或几个方向分布,如图6.26~6.29所示及图版Ⅵ。针管状包裹体有单独存在也有成排发育,形态为粗细和长短不等的管状,管道内部为面棱状,管壁显示阶梯或不规则形态,由钻石晶体内部延伸至晶面,或出露或在靠近晶面处被封闭,出露面为不规则形状。由于针管状孔道深入钻石内部,对钻石的整体均一性造成了影响,因此本文将其纳入钻石的包裹体范畴来分析。

含有针管状包裹体的钻石晶体都是强烈变形的歪晶或呈碎块状,晶体表面蚀像丰富多样,其中以熔蚀线和塑性变形滑移线最发育。针管状包裹体都发育在晶体滑移变形面的延伸方向和交汇处,内部裂隙发育,佐证了钻石中针管状包裹体与钻石生长环境中受应力作用有关。拉曼测试发现,针管状包裹体的不同地方分别显示出钻石(样品802-3-1)、绿辉石(样品802-7)、石墨、氮气(样品802-7)、黄铜矿(样品111-HN-02和802-7)和黄长石(样品42-SD-01)的拉曼峰。由此可以推断,钻石中的针管状包裹体主要与钻石内部晶格结构以及后期地质作用有关。当塑性变形区域形成了晶体内部缺陷(主要为线性晶格缺陷),钻石遭受熔蚀时沿塑性变形方向更易被改造而形成熔蚀通道,由表及里的熔蚀作用遇到其他形式的晶体缺陷会使通道扩大或终止,这取决于晶体缺陷对熔蚀介质的抵抗力,并会在钻石表面的通道露口处导致后期杂质物质的进入而形成次生包裹体。

从以上对湖南、山东和辽宁钻石中的包裹体形貌分析可以发现,三个产地钻石包裹体的形貌都是以浑圆晶体为主,包裹体遭受了不同程度的熔蚀,导致矿物包裹体显示圆滑晶面棱和变形拉长外形。

前人在研究山东八面体金刚石/钻石的透辉石包裹体时,沿解理方向也观察到细小黑色斑点(黄蕴慧等,1992);亓利剑等(1999)在观察辽宁钻石中的橄榄石包裹体时曾发现少数橄榄石表面被黑色斑点状薄膜所覆盖,但都未对此种黑色斑点状薄膜进行确定。项目组在山东和湖南金钻石包裹体观察中确认了这些晶体包裹体上的黑色斑点是石墨物质,同时发现,石墨对所在包裹体晶体的拉曼测试造成影响,会造成包裹体矿物本征拉曼峰强度变弱或缺失(图6.30)。石墨斑纹在不同种类包裹体晶面上和包裹体周围派生微裂隙中存在,并完好封闭在寄主钻石中。原生石墨包裹体的存在可能说明这些钻石形成过程恰好处于钻石与石墨稳定区边界附近,而次生石墨包裹体在晶体中可能和钻石形成后外界温压环境明显变化有关(Harris,1968,1972;Vance,1972)。

在湖南和山东钻石中发现多个钻石中有成排出现针管状孔道,大部分管道直且内壁具明显的面棱状,推断应该是钻石生长过程中留下的生长特征。早期研究表明,金刚石/钻石的熔蚀通道与晶体缺陷有关(Tolansky,1955;Orlov,1973)。两粒澳大利亚粉红色金刚石/钻石中出现熔蚀孔道引起了关注(etched dislocation channel)(Hofer,1985);Crowningshield(1992)在粉红色金刚石/钻石中也发现“之”字形熔蚀孔道;Taijin Lu(2001)利用光学显微镜和扫描电镜研究了7颗天然金刚石/钻石中的熔蚀管道的特征,这些管道以各种形式的平行线状、弯折状或者是蠕虫状等外形出现,在许多产地中的Ⅰ型和Ⅱ型金刚石/钻石中都会出现;杨明星等(2004)对湖南褐色金刚石/钻石中的直管状的熔蚀孔道进行研究后认为它们是与塑性变形有关的熔蚀特征。湖南钻石在形成后的上升阶段,可能经过了剪应力的作用和普遍的熔蚀过程。

图6.26 湖南钻石中平行排列的针管状包裹体

(样品802-3-1,微分干涉显微镜下,100×)

Figure 6.26 Parallel arranged tubular inclusions in Hunan diamond

(sample 802-3-1,Differential Interference Contrast Microscope,500×)

图6.27 湖南钻石中针管状包裹体,内壁显示多面棱形态

(样品802-7,微分干涉显微镜下,500×)

Figure 6.27 Tubular inclusion with multi-facet prism texture inwall in Hunan diamond

(sample 802-7,Differential Interference Contrast Microscope,500×)

图6.28 湖南钻石中平行排列的细长管状包裹体

(样品802-3-2,微分干涉显微镜下,100×)

Figure 6.28 Parallel arranged slender and tubular inclusions in Hunan diamond

(sample 802-3-2,Differential Interference Contrast Microscope,100×)

图6.29 山东钻石中密集的针管状包裹体

(样品42-SD-01,微分干涉显微镜下,200×)

Figure 6.29 Intensive tubular inclusions in Shandong diamond

(sample 42-SD-01,Differential Interference Contrast Microscope,200×)

金刚石/钻石在室温和较低温度下主要表现沿{111}解理,常具脆性,随温度的升高,塑性变形明显增加,溶蚀孔道可能和塑性形变有关。实验表明,金刚石/钻石要发生塑性变形必须有温度、压力条件相互配合(图6.31):天然金刚石/钻石生长的温度在 900~1300℃之间,压力为(45~70)×108Pa,因此在地幔高温高压下的金刚石/钻石生长环境中受应力作用时金刚石/钻石易产生塑性变形,从而产生一系列的晶体缺陷,进而对金刚石/钻石晶体的生长和光学性能等都产生极大的影响;如果环境温度太低(在900℃以下),则有可能发生脆性变形(Bursill,1995;Schmetzer,1999)。

图6.30 湖南钻石中的橄榄石及其上的石墨斑点拉曼测试图

Figure 6.30 Raman Microscope testing results of olivine inclusion and the graphite spots in Hunan diamond

图6.31 金刚石/钻石塑性变形的温度压力范围

(原图据Schmetzer,1999)

Figure 6.31 Temperature and pressure range of diamond plastic deformation

(Original drawing by Schmetzer,1999)

综上所述,山东和湖南钻石晶体包裹体中附着的同生石墨包裹体可能说明钻石生长环境经历了明显的温压变化,钻石的生长环境具有波动性。湖南钻石中出现的针管状孔道数量比例最多,排列更密集,表明相对于辽宁和山东钻石,湖南沅水流域钻石的形成环境中塑性变形作用更为强烈,使其内部结构产生了复杂、明显的三维溶蚀缺陷。

阅读全文

与单晶金刚石形貌分析相关的资料

热点内容
样样一元投资多少 浏览:384
党政工作人员可以投资股市 浏览:403
2018年宁夏理财规划师报名时间 浏览:464
p2p理财平台评级 浏览:802
ipad用期货 浏览:399
你的理财目标 浏览:40
2019年4月11日汽油价格 浏览:493
智睿投资可信吗 浏览:506
601099增发价格 浏览:814
理财能行吗 浏览:972
华宇电气股票 浏览:548
fof底层投资非标 浏览:854
贝格尔股票 浏览:693
1999卢布是多少人民币 浏览:578
期货帐户登陆提示不合法的帐户 浏览:30
基金备案后才能投放 浏览:21
叠加资金指标公式 浏览:191
梵大集团股票 浏览:454
武汉吴楚投资管理咨询有限公司 浏览:895
交行工资理财 浏览:628