导航:首页 > 股市分析 > 股价模型0增长固定

股价模型0增长固定

发布时间:2021-06-25 11:44:08

1. 固定成长股票估值模型计算公式推倒导

数学本质是对一个等比数列求极限和的过程。

该等比数列的公比q,等于版(1+g)/(1+k),其中g为股利的权固定增长率,k为折现率。

等比数列的求和公式很简单,即数列的和S,等于a1*(1-q^n)/(1-q),把q的表达式代入该求和公式中,再把n趋于无求大,就得到结果:股价理论值P=D1/(k-g),其中D1为第一期股利即D0(1+g)。

(1)股价模型0增长固定扩展阅读:

数学思维拓展训练特点:

1、 全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,

2、 通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。

3、 根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。

4、利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的五大领域的基础能力。

5、为解决幼小衔接的难题而准备。

2. 固定增长股票价值公式中的 d0(1+g)/Rs-g 怎么换算出来的 主要是Rs-g不明白!

是依据股票投资的收益率不断提高的思路,Rs=D1/Po+g股票收益率=股利收益率+资本利得Po=d0(1+g)/Rs-g。

股票是虚拟资本的一种形式,它本身没有价值。从本质上讲,股票仅是一个拥有某一种所有权的凭证。

股票之所以能够有价,是因为股票的持有人,即股东,不但可以参加股东大会,对股份公司的经营决策施加影响,还享有参与分红与派息的权利,获得相应的经济利益。同理,凭借某一单位数量的股票,其持有人所能获得的经济收益越大,股票的价格相应的也就越高。

(2)股价模型0增长固定扩展阅读

固定成长股票的价值

如果企业股利不断稳定增长,并假设每年股利增长均为g,目前的股利为D0,则第t年的股利为:

Dt=D0(1 +g)

固定成长股票的价值的计算公式为:

当g固定时,上述公式可简化为:

如要计算股票投资的预期报酬率,则只要求出上述公式中Rs即可:

Rs= (D1 /P0) +g

例如,某企业股票目前的股利为4元,预计年增长率为3%,投资者期望的最低报酬率为8%,则该股票的内在价值为:

=82.4(元)

若按82.4元买进,则下年度预计的投资报酬率为:

Rs= (D1 /P0) +g

=4×(1+3%)÷82.4+3%

=8%

3. 表格中数据增大到某一固定值,例如 10个单元格我想从0增加到5,结果自动填充0,0.5,1,……,10.

an=a0+(n-1)*d

a0=0 (从0增长的)

所以d=an/(n-1)

如你所说应该是,

n=10

an=a10=5

所以d=5/9

即每次增加的不是0.5,是5/9

如果是915个单元格,则n=915,

从0开始,则a0=0

增长到127,则an=127

所以d=an/(n-1)=127/914

比如你要结果在B列生成,可以在B1输入公式:

=(127/914)*(ROW(A1)-1)

然后向下拉公式至915行即可。

4. 零成长股票和固定股利增长率模型,股票资金成本如何计数

零成长股票,和固定股利的股票,不是一个概念吧,不要搞混了

5. 股票估价中的股利固定增长模型数学推导问题

可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。

6. 固定增长模型隐含的几个假设

你还四个假设,具体的话你去网络找一下,我不太记得。

7. 基数为0时,增长率怎么计算

上期利润为负,或为零的情况下,不计算增长率。如果有要求要提供增长率,可以予以文字说明。

我们可在基数上定义若干算术运算,这是对自然数运算的推广。给定集合X 与 Y,定义 X+Y={(x,0):x ∈ X} ∪ {(y,1):y ∈ Y},则基数和是|X| + |Y| = |X + Y|。

若 X 与 Y 不相交,则 |X| + |Y| = |X ∪ Y|。基数积是|X||Y| = |X × Y|,其中 X × Y 是 X 和 Y 的笛卡儿积。基数指数是|X|^|Y| = |X^Y|,其中 X^Y 是所有由 Y 到 X 的函数的集合。

1、普通性质

在有限集时,这些运算与自然数无异。一般地,它们亦有普通算术运算的特质:

加法和乘法是可交换的,即 |X|+|Y|=|Y|+|X| 及 |X||Y|=|Y||X|。

加法和乘法符合结合律,(|X|+|Y|)+|Z|=|X|+(|Y|+|Z|) 及 (|X||Y|)|Z|=|X|(|Y||Z|)

分配律,即 (|X|+|Y|)|Z|=|X||Z|+|Y||Z|| = |X||Y|+|X||Z|。

无穷集合的加法及乘法(假设选择公理)非常简单。若 X 与 Y 皆非空而其中之一为无限集,则|X| + |Y| = |X||Y| = max{|X|, |Y|}.

记 2 ^ | X | 是 X 的幂集之基数。由对角论证法可知 2 ^ | X | > | X |,是以并不存在最大的基数。事实上,基数的类是真类。

2、其他性质

还有些关于指数的有趣性质:

|X|^0 = 1 (很奇怪地 0^0 = 1)。

0^|Y| = 0 若 Y 非空。

1^|Y| = 1。

|X| ≤ |Y| 则 |X||Z| ≤ |Y||Z|。

若 |X| 和 |Y| 均为有限集且大于 1,而 Z 是无穷集,则 |X||Z| = |Y||Z|。

若 X 是无穷集而 Y 是非空的有限集,则 |X||Y| = |X|。

(7)股价模型0增长固定扩展阅读:

增长率公式

n年数据的增长率=[(本期/前n年)^(1/(n-1) )-1]×100%

公式解释:

1、本期/前N年:应该是本年年末/前N年年末,其中,前N年年末是指不包括本年的倒数第N年年末,比如,计算2005年底4年资产增长率,计算期间应该是2005、2004、2003、2002四年,但前4年年末应该是2001年年末。括号计算的是N年的综合增长指数,并不是增长率。

2、( )^1/(n-1)是对括号内的N年资产总增长指数开方。也就是指数平均化。因为括号内的值包含了N年的累计增长,相当于复利计算。因此要开方平均化。

应该注意的是,开方数应该是N,而不是N-1,除非前N年年末改为前N年年初数。总之开方数必须同括号内综合增长指数所对应的期间数相符。而具体如何定义公式可以随使用者的理解。

3、[( )^1/(n-1)]-1,减去1是因为括号内计算的综合增长指数包含了基期的1,开方以后就是每年的平均增长指数,仍然大于1,而我们需要的是年均增长率,也就是只对增量部分实施考察,因此必须除去基期的1,因此要减去1。

8. 股利固定增长模型中有一个公式:P=D0*(1+g)/(K-g)=D1/(K-g) 如何来决定哪种情况下是使用D0,情况下是使用D1.

如果题中给出本年支付的股利数字,然后告诉你增长率,那么就要用D0,如果直接给出下一年的股利,就用D1。

模型假定未来股利的永续流入,投资者的必要收益率,折现公司预期未来支付给股东的股利,来确定股票的内在价值(理论价格)。

分两种情况:一是不变的增长率;另一个是不变的增长值。具有三个假定条件:股息的支付在时间上是永久性的;股息的增长速度是一个常数;模型中的贴现率大于股息增长率。



(8)股价模型0增长固定扩展阅读:

由于股票市场的投资风险一般大于货币市场,投资于股票市场的资金势必要求得到一定的风险报酬,使股票市场收益率高于货币市场,形成一种收益与风险相对应的较为稳定的比价结构。

零增长模型实际上是不变增长模型的一个特例。假定增长率g等于0,股利将永远按固定数量支付,这时,不变增长模型就是零增长模型。

9. 股利固定增长的股票估价模型

可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。

第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。

第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。

10. 稳定增长股票价格模型

股票增长模型主要包括:
一、零增长模型
零增长模型是股息贴现模型的一种特殊形式,它假定股息是固定不变的。换言之,股息的增长率等于零。零增长模型不仅可以用于普通股的价值分析,而且适用于统一公债和优先股的价值分析。
零增长模型实际上也是不变增长模型的一个特例。特别是,假定增长率合等于零,股利将永远按固定数量支付,这时,不变增长模型就是零增长模型。这两种模型来看,虽然不变增长的假设比零增长的假设有较小的应用限制,但在许多情况下仍然被认为是不现实的。但是,不变增长模型却是多元增长模型的基础,因此这种模型极为重要。
二、不变增长模型
不变增长模型亦称戈登股利增长模型又称为“股利贴息不变增长模型”、“戈登模型(Gordon Model)”,在大多数理财学和投资学方面的教材中,戈登模型是一个被广泛接受和运用的股票估价模型,该模型通过计算公司预期未来支付给股东的股利现值,来确定股票的内在价值,它相当于未来股利的永续流入。戈登股利增长模型是股息贴现模型的第二种特殊形式,分两种情况:一是不变的增长率;另一个是不变的增长值。
三、多元增长模型
多元增长模型是假定在某一时点T之后股息增长率为一常数g,但是在这之前股息增长率是可变的。
多元增长模型是被最普遍用来确定普通股票内在价值的贴现现金流模型。这一模型假设股利的变动在一段时间T内并没有特定的模式可以预测,在此段时间以后,股利按不变增长模型进行变动。因此,股利流可以分为两个部分:第一部分包括在股利无规则变化时期的所有预期股利的现值;第二部分包括从时点T来看的股利不变增长率时期的所有预期股利的现值。

阅读全文

与股价模型0增长固定相关的资料

热点内容
综合管廊融资 浏览:498
b股有哪些股票 浏览:698
上海世贵贵金属有限公司 浏览:349
德宽投资有限公司 浏览:311
落地房抵押贷款 浏览:76
2016年韩币兑换人民币汇率 浏览:856
天齐锂业股票吧 浏览:460
股票前面带s 浏览:732
北京鼎天投资管理有限公司 浏览:325
转让1亿融资租赁 浏览:324
招商证券10万资金佣金多少 浏览:82
嘉会创投理财安全吗 浏览:578
吴志祥融资 浏览:832
11月17日人民币台币汇率 浏览:35
去哪网股票价格 浏览:604
融资融券余额差值 浏览:340
国有资产融资是什么 浏览:504
信托的基本职能 浏览:183
两面针股票价格 浏览:354
外汇中长线技巧 浏览:761