⑴ 如何用EXCEL做回归分析
在日常数据分析工作当中,回归分析是应用十分广泛的一种数据分析方法,按照涉及自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
回归分析的实施步骤:
1)根据预测目标,确定自变量和因变量
2)建立回归预测模型
3)进行相关分析
4)检验回归预测模型,计算预测误差
5)计算并确定预测值
我们接下来讲解在Excel2007中如何进行回归分析?
一、案例场景
为了研究某产品中两种成分A与B之间的关系,现在想建立不同成分A情况下对应成分B的拟合曲线以供后期进行预测分析。测定了下列一组数据:
⑵ 回归分析的散点图怎么看啊
在回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。
用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。散点图将序列显示为一组点。值由点在图表中的位置表示。类别由图表中的不同标记表示。散点图通常用于比较跨类别的聚合数据。
散点图矩阵
当欲同时考察多个变量间的相关关系时,若一一绘制它们间的简单散点图,十分麻烦。此时可利用散点图矩阵来同时绘制各自变量间的散点图,这样可以快速发现多个变量间的主要相关性,这一点在进行多元线性回归时显得尤为重要。
以上内容参考:网络-散点图
⑶ Excel图表中回归分析多项式趋势线的方程和R平方是怎么算出来的例如:
怎么算出来就要考验你的数学功底了, 图表里面添加了趋势线后,EXCEL就能根据数据得出方程.
⑷ spss回归分析结果图是什么意思
⑸ 回归分析做出了一些图,能帮忙解释一下嘛,尤其是最后的图表,看不明白
最后一个表是各个模型的回归系数表,从这个表中可以看出哪些变量有显著影响,哪些没有,以及回归方程如何写。(南心网 SPSS影响因素的回归分析)
⑹ excel怎么看excel回归分析表
以Excel2010为例。
1、“开发工具”选项卡 中单击“加载项”组中的“加载项”按钮,打开“加载宏”对话框。如下图。勾选 “分析工具库”。
2、“数据”选项卡中“分析”组中的“数据分析”按钮,打开“数据分析”对话框。如下图。单击“回归”选项。
⑺ Excel 这种回归分析图如何做的呢
看不到你的抓图。
2003及其以下版本:
菜单栏——工具——数据分析——出现《数据分析》对话框——回归——确定——出现《回归》对话框:按提示操作——勾选你要的图表——确定。
2007及其以上版本:
菜单栏——数据——分析版块——数据分析——出现《数据分析》对话框:(其他操作同上)
⑻ 如何分析spss中的回归分析图表
spss做中介分析
直接在多元回归分析里面
有个
block
那个分层就可以了,将自变量一层一层的移入到那个对话框,就会一次性出来一个整合的表格,而不应该你这样你一步一步地回归。
⑼ excel2016做回归分析时为什么做完后会出现多个图表呢
Excel做不了多元回归分析,网上的方法是把一元回归分析仪不同自变量做了几次罢了,懂了吧
⑽ 回归分析表怎么看懂
我给你解读一份stata的回归表格吧,应该有标准表格的所有内容了,因为你没有给范例,……不过我们考试基本就是考stata或者eview的输出表格,它们是类似的。
X变量:教育年限
Y变量:儿女数目
各个系数的含义:
左上列:
Model SS是指计量上的SSE,是y估计值减去y均值平方后加总,表示的是模型的差异
Model df是模型的自由度,一般就是指解释变量X的个数,这里只有一个
Resial SS 和df 分别是残差平方和以及残差自由度 N-K-1(此处K=1)=17565
Total SS 和 df分别是y的差异(y减去y均值平方后加总)以及其自由度N-1=17566
MS都是对应的SS除以df,表示单位的差异
右上列:
Number of obs是观测值的数目N,这里意味着有17567个观测值
F是F估计值,它是对回归中所有系数的联合检验(H0:X1=X2=…=0),这里因为只有一个X,所以恰好是t的平方。这里F值很大,因此回归十分显著。
Prob>F是指5%单边F检验对应的P值,P=0意味着很容易否定H0假设,回归显著。
R-squared是SSE/SST的值,它的意义是全部的差异有多少能被模型解释,这里R-squared有0.0855,说明模型的解释度还是可以的。
Adj R-squared是调整的R-squared,它等于1-(n-1)SSR/(n-k-1)SST,它的目的是为了剔除当加入更多X解释变量时,R-squared的必然上升趋势,从而在多元回归中更好的看出模型的解释力,但是本回归是一元的,这个值没有太大意义。
Root MSE是RMS的开方,是单位残差平方和的一种表现形式。
下列:
Coef分别出示了X变量schooling的系数和常数项的值,其含义是,如果一个人没有受过教育,我们预测会平均生育3个子女,当其他因素不变时,一个人每多受一年教育,我们预测其将会少生0.096个孩子。X变量的coef并不大,因此其实际(也叫经济)显著性并不太高。
Std.err则是估计系数和常数项的标准差。一般我们认为,标准差越小,估计值越集中、精确。
t是t估计值,它用于检验统计显著性,t值较大,因此回归是显著的。
P>abs(t)项是5%双边t检验对应的P值,P=0意味着很容易否定H0假设,统计显著。
95%conf interval项是95%的置信区间,它是x变量的系数(或常数项)分别加减1.96*SE,这是说,有95%的可能性,系数的真值落在这个区域。