1. 成为数据分析师的感受是什么呢
我不是数据分析师,但是我舍友现在是高级数据分析师,最近整天听她诉说工作情况,那我就说一说她的感受吧。
我舍友是学数学专业的,不过她的第一份工作是老师,第二份工作是进口操作,这两份工作都与数据分析没有关系,但是经过前两份工作,她慢慢的找到了自己的方向,还是想做老本行、与自己专业相关的数据方面的。
最终舍友裸辞了,开始攻读数据方面的各种专业书籍、购买网络课程,光打印的基本的EXCEL知识就有好几百页,还有她花500块买的二手的学习资料,一共500多个课时,其实都是录下来的,听都听不清楚,看着就很枯燥,但是她却坚持每天学习。星期天我基本见不上她,她总是一个人去泡图书馆,每次见面都给我说好难啊,要学的东西好多啊,最近准备做一个案例啊。最终她通过自己三个月的闭关修炼,功夫不负有心人,她经过初试、复试、再复试成功砍掉与她竞争的两个研究生和两个本科毕业生,从此踏入了央企的大门成为了一名高级数据分析师,工资都是按年薪计算的,已入职就已经知道自己今年的年终奖了。
目前舍友基本是稳定下来了,但是她工作很忙碌,每天都加班很晚,回到家晚上还要继续学习,她说别人也很忙,没有人带她一切都靠她自学,而且她之前也没有这方面的工作经验,所以现在做的也很吃力,每天都要赶报告。另外,舍友还经常出差,前几天刚从深圳出差5天回来,就又跑到濮阳去了。出差对她来说很累很累,很不适应,脸上现在起了很多痘。还好舍友单身,出差对她来说也挺好的,多学习多看看。
要戴皇冠,必受其重,每份工作都不容易吧,想要收获更多,就要付出双倍的努力。
2. 什么是数据分析带你了解数据分析的日常工作
【导读】随着互联网事业的发展,以及不断更新的人工智能、物联网等技术,都离不开数据分析,那么什么是数据分析?为什么时下数据分析师是比较热门的高薪职业呢?很多小伙伴认为数据分析师就是简单的将数据收集,然后统计最后给出结论这样的工作,其实不然,下面小编带你了解数据分析的日常工作,让你对数据分析师有个更加全面的了解。
数据分析师的日常
日常一:不固定的工作时间
很多上班族的工作时间都是固定的,做五休二,朝九晚五,不免让人感到乏味。数据分析师却不然,他们没有固定的工作时间。因为数据分析师需要根据实时数据给出最新结论。换而言之,数据分析师就是要时刻准备着。
日常二:和数据打交道
数据分析师的日常就是与各种各样的数据打交道。他们需要花费大量的时间来收集、整理数据。这两个步骤看似简单,但是如果将步骤细分,就有些复杂了。这些步骤主要包括:
1.提取数据。2.合并资料。3.分析数据。4.寻找模式或趋势。5.使用各种工具,包括R,Tableau,Python,Matlab,Hive,Impala,PySpark,Excel,Hadoop,SQL和SAS。6.开发和测试新算法。7.试图简化数据问题。8.开发预测模型。9.建立数据可视化。10.写出结果并与他人分享。11.汇集概念证明……
但是这些任务都是数据分析师的次要任务,数据分析师的主要任务还是先确定问题,然后再通过尝试不同的办法来解决问题。
日常三:让数据变得通俗易懂
有人认为,数据分析师是可有可无的。这样的人往往不具备前瞻性。事实恰恰相反,数据分析师不仅仅需要建立模型,还需要解决问题。他们需要对数据进行处理,需要从小的角度看到全局,整理出简洁明了的报告,从而让外行人明白数据的含义。
日常四:不断汲取新的知识
数据分析师盯着电脑只会是在分析数据吗?
NO!他们可能是在:
1.浏览与行业相关的博客、新闻、通讯以及讨论区。
2.参加会议或者和其他数据分析师在线交流。
3.探索出新方法时,和同行共享新信息。......
除了在数据中挖掘宝藏信息,数据分析师还需要在数据分析领域不停地钻研。一个优秀的数据分析师,只有通过不断地学习新的知识,才能与时俱进,不被社会淘汰。
以上就是小编今天给大家整理分享关于“什么是数据分析?带你了解数据分析的日常工作”的相关内容,希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
3. 如何快速成为数据分析师
1、了解数据分析师
数据分析可以理解为做菜的,把数据拿过来做成各种“菜”。这些“菜”就是数据分析师的工作结果。吃菜的人就是数据分析师服务的对象,可以是公司、个人、机构。
一个合格的数据分析师就是在保证数据干净,数据原材料丰富的情况下把数据做成对目标用户/用户群有“营养”,有价值的“菜”。
2、选择合适课程学习。
课程的来源非常多,在这个数据爆炸的时代最不缺的就是数据。可以采用以下课程:网易公共课、猴子聊数据分析、天善学院、Coursera等网课平台学习。
3、理论结合实践加深印象。
要实践,就要有两个条件:数据来源和数据分析方法。数据来源药权威,有很多权威网站如人民网、中华网等。其次是数据分析思维。需要多练,多看,多交流。
数据分析师需求量大的原因:
1、数据量越来越多
时至今日互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年间创造出来的。举个直观的例子来说明一下互联网的数据量:假设大西洋里每一升海水代表一个字节的数据,那么整个大西洋存储的数据也只能到2010年就满了。
2、数据之间的关系越来越复杂
理解这个原理可以做这么一个数字题。现在有2个人互相联网,第3个人加入后会和前两个人都产生连接,那么就是1+2个链接。第4个人加入后就产生1+2+3个链接。
3、数据的价值越来越大
维度的增加和信息的在线化导致互联网行业的快速发展。尤其是和消费、金融、理财、个人信息相关的数据会不断强化数据的重要性。
4、数据方面的人才欠账越来越严重
另一方面,数据分析师的人才数量却跟不上这些数据的增速。也很好理解:在数据量指数型增长的同时,工作人口无法指数型增长(甚至有所下降),因此,优秀的公司招不到优秀的人成为常态,也常常出现原来从事其他岗位的人边干边学数据分析的情况。
4. 掌握这4点!快速成为一名数据分析师
业务能力
数据分析工作的重中之重就是业务能力,只要真正的在实践领域从事过,就会真正的明白业务知识是你分析的根本。而业务知识的学习是需要时间积累的。业务知识的培养是将远远超过技术工具的学习。数据分析其实就是基于业务之上的更深层次的思考和总结。对业务学习,我们可以根据以前的报告和案例拿来研究,这是一个需要时间沉淀的过程,也是最需要不断提升的能力,没有之一。
思考能力
当我们拿到一份数据报表的时候,整个数据就摆在面前,它不会主动开口告诉你。这就需要我们去推演和分析,从中找到规律,迅速评估问题的关键属性和决定因素,形成自己的独有见解,总结报告。所谓心思缜密,滴水不漏,没有思考逻辑,就没有分析思维。我们培养思考能力,可以通过跨领域的知识来带给我们不同的思维方式和问题的角度;另外也要养成爱思考的习惯。“学而不思则罔,思而不学则殆”,思考本身就是一种实践,将你所学的知识更系统和深入。
沟通能力
数据分析贯穿企业整个工作流程链,你需要面对不同的岗位,不同的角色,这个时候,就需要你良好的沟通能力,采用不同的语言和表达方式,来获取你想要的东西。沟通能力就是数据和业务的桥梁。再沟通中,我们不要固执己见,要采取他人的意见,尤其是智者的意见,可以帮我们降低犯错率,提高分析正确率,这样我们的分析才会更有说服力。
技术能力
我们自己了解到的,相关技术像Excel,MySql,Python,SPSS等这些工具。我们如果刚刚步入数据分析工作,其实Excel就已经足够了。如果我们想更深层次的掌握,可以学习Python,R,SPSS等这些。他们提供的强大的挖掘功能和图形能力。尤其是R,Python引用他们的库非常方便,而已技术也很成熟。
关于掌握这4点!快速成为一名数据分析师,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
5. 数据分析需要掌握哪些知识
数据分析所需要掌握的知识:
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
6. 数据分析和大数据平台网站有哪些
无需编程即可用来数据分析的工具/软件,推荐几个:
Excel / Spreadsheet:http://www.openoffice.org/download/
Trifacta:https://www.trifacta.com/start-wrangling/
Rapid Miner:https://rapidminer.com/
Rattle GUI:https://cran.r-project.org/bin/windows/base/
Orange:http://orange.biolab.si/
Tableau Public:https://public.tableau.com/s/
Talend:http://openrefine.org/download.html
7. 数据分析学习交流贴发在哪好
如果是干货可以投稿到数据分析网,其他交流问题可以到相关贴吧!
在这推荐你一款免费私有化部署的数据统计分析工具Cobub Razor
8. 如何做好数据分析
第一步:数据准备:(70%时间)
· 获取数据(爬虫,数据仓库)
· 验证数据
· 数据清理(缺失值、孤立点、垃圾信息、规范化、重复记录、特殊值、合并数据集)
· 使用python进行文件读取csv或者txt便于操作数据文件(I/O和文件串的处理,逗号分隔)
· 抽样(大数据时。关键是随机)
· 存储和归档
第二步:数据观察(发现规律和隐藏的关联)
· 单一变量:点图、抖动图;直方图、核密度估计;累计分布函数
· 两个变量:散点图、LOESS平滑、残差分析、对数图、倾斜
· 多个变量:假色图、马赛克图、平行左边图
第三步:数据建模
· 推算和估算(均衡可行性和成本消耗)
· 缩放参数模型(缩放维度优化问题)
· 建立概率模型(二项、高斯、幂律、几何、泊松分布与已知模型对比)
第四步:数据挖掘
· 选择合适的机器学习算法(蒙特卡洛模拟,相似度计算,主成分分析)
· 大数据考虑用Map/Rece
· 得出结论,绘制最后图表
循环到第二步到第四步,进行数据分析,根据图表得出结论完成文章。
结合实际业务来做数据分析
“无尺度网络模型”的作者艾伯特-拉斯洛·巴拉巴西认为——人类93%的行为是可以预测的。数据作为人类活动的痕迹,就像金矿等待发掘。但是首先你得明确自己的业务需求,数据才可能为你所用。
1.数据为王,业务是核心
· 了解整个产业链的结构
· 制定好业务的发展规划
· 衡量的核心指标有哪些
有了数据必须和业务结合才有效果。首先你需要摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。
2.思考指标现状,发现多维规律
· 熟悉产品框架,全面定义每个指标的运营现状
· 对比同行业指标,挖掘隐藏的提升空间
· 拆解关键指标,合理设置运营方法来观察效果
· 争对核心用户,单独进行产品用研与需求挖掘
发现规律不一定需要很高深的编程方法,或者复杂的统计公式,更重要的是培养一种感觉和意识。不能用你的感觉去揣测用户的感觉,因为每个人的教育背景、生活环境都不一样。很多数据元素之间的关系没有明显的显示,需要使用直觉与观察(数据可视化技术来呈现)。
3.规律验证,经验总结
发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。
sc-cpda 数据分析公众交流平台。
9. 数据分析要掌握哪些知识
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
10. 数据分析师在干什么工作的时候需要沟通交流
一般情况下是销售人员比较缺乏的时候,销售人员对大数据的了解程度不够,需要大数据分析工程师。做销售工作。针对客户的一些解答和解释。