① 关于镁合金和铝合金比较
1、抗拉强度
同等体积的镁合金材料做成的车架强度不如铝合金,要达到车架强度就要增加材料厚度和管经,所以从重量角度与铝合金来比较镁合金没有任何优势。
2、抗疲劳强度
同等体积的镁合金材料做成车架的耐久性能比铝合金车架差。也是镁合金致命的缺点。随着骑行的次数愈多,应力发生的次数也愈高,强度会显著降低,甚至车架寿命不超过2-3年,所以专业骑手很少使用镁合金车架,如果在比赛时使用,也是计算着里程采用抛弃形式更换的。
3、金属氧化性
元素周期表上就明确显示,镁合金比铝合金更容易被氧化腐蚀。
4、制造成本
因镁合金是活泼金属,所以制造设备和环境有更高的要求,导致制造成本高涨,生产出来的自行车车架性价比远不及铝合金车架。
5、比重密度
同等体积的条件下镁合金比铝合金质量轻,这是镁合金的优势。
6、弹性模量
镁合金材料做成的车架刚性比铝合金车架差,同等厚度和管径作成的车架在实际骑乘时会吸收较多的踩踏力度影响骑乘效率。
(1)2014年镁合金新材料行业分析报告扩展阅读
铝合金按加工方法可以分为变形铝合金和铸造铝合金。变形铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。
不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。
可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。一些铝合金可以采用热处理获得良好的机械性能,物理性能和抗腐蚀性能。
铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金,铝锌合金和铝稀土合金,其中铝硅合金又有简单铝硅合金(不能热处理强化力学性能较低,铸造性能好),特殊铝硅合金(可热处理强化,力学性能较高,铸造性能良好)。
参考资料来源:网络-镁合金
参考资料来源:网络-铝合金
② 镁合金材料!!
什么是镁合金材料?顾名思义镁合金是由镁和其他金属组成的,其主要成分是镁元素,常用的变形镁合金镁元素占比在90%及以上,其他金属,含有铝、锌、锰、锆等其他元素。
根据其合金元素的配比不同,镁合金主要又可分为镁铝锌合金,镁锰合金,镁锌锆合金等。
镁铝锌合金国内其主要的代表有AZ31B、AZ91D,国外代表主要有AZ31B、AZ80A等镁合金;其中AZ31B镁合金生产工艺成熟,性能适中,价格便宜,应用范围较广。
镁锰合金的主要代表有ME20M镁合金,国内老牌号叫MB8(八号镁合金)。
镁锌锆合金国内主要代表为ZK61M镁合金,老牌号为MB15(十五号镁合金)
资料来自百业网络关于镁合金是什么材料做的、和塑料比怎么样,有哪些特点优势及价格?的介绍!
③ 镁合金的发展
得益于中国汽车工业和3C等行业的转型升级及其中国经济地位的显著提升,镁合金行业令市场看好。其中,汽车行业的轻量化,环保化需求,尤其是新能源汽车的发展,以及镁合金研发技术和回收利用技术的不断进步,对促使镁合金的广泛应用将是利好消息。
2015年,国内汽车用镁合金将达到68kg/辆,而同期我国汽车销量将突破2800万辆,乘用车销量将达到1960万辆,自主品牌汽车企业通过产业兼并、技术研发和市场渠道开拓等因素作用,销量将突破1000万辆。
与此同时,镁合金在医药化工和航空航天工业领域的应用也将得到成长。由于下游终端汽车消费市场的稳步增长,预计2015年,全球镁合金市场为600万吨,年均复合增长率(CAGR)为20%-25%(其中包含了交通工具、3C、航空航天和医药化工领域镁合金的应用)。
此外,作为有色金属合金行业的子行业,镁合金行业在中国制造工业的的升级过程中得到实惠。作为资金、材料密集型行业,原材料价格的稳定和较低水平、铸造件行业的整合集中、技术研发的进步等都将较为有利于镁合金行业的发展,市场较为看好。
④ 新材料产业的材料分类
新材料作为高新技术的基础和先导,应用范围极其广泛,它同信息技术,生物技术一起成为二十一世纪最重要和最具发展潜力的领域.同传统材料一样,新材料可以从结构组成,功能和应用领域等多种不同角度对其进行分类,不同的分类之间相互交叉和嵌套.
新材料主要有传统材料革新和新型材料的推出构成,随着高新技术的发展,新材料与传统材料产业结合日益紧密,产业结构呈现出横向扩散的特点.
新材料的分类:按照应用领域来分,一般把新材料归为以下几大类:
1 信息材料
电子信息材料及产品支撑着现代通信,计算机,信息网络,微机械智能系统,工业自动化和家电等现代高技术产业.电子信息材料产业的发展规模和技术水平,在国民经济中具有重要的战略地位,是科技创新和国际竞争最为激烈的材料领域.微电子材料在未来10~15年仍是最基本的信息材料,光电子材料将成为发展最快和最有前途的信息材料.信息材料主要可以分为以下几大类:
集成电路及半导体材料:以硅材料为主体,新的化合物半导体材料及新一代高温半导体材料也是重要组成部分,也包括高纯化学试剂和特种电子气体;光电子材料:激光材料,红外探测器材料,液晶显示材料,高亮度发光二极管材料,光纤材料等领域;新型电子元器件材料:磁性材料,电子陶瓷材料,压电晶体管材料,信息传感材料和高性能封装材料等.
当前的研究热点和技术前沿包括柔性晶体管,光子晶体,SiC,GaN,ZnSe等宽禁带半导体材料为代表的第三代半导体材料,有机显示材料以及各种纳米电子材料等.
2 能源材料
全球范围内能源消耗在持续增长,80%的能源来自于化石燃料,从长远来看,需要没有污染和可持续发展的新型能源来代替所有化石燃料,未来的清洁能源包括氢能,太阳能,风能,核聚变能等.解决能源问题的关键是能源材料的突破,无论是提高燃烧效率以减少资源消耗,还是开发新能源及利用再生能源都与材料有着极为密切的关系.
传统能源所需材料:主要是提高能源利用效率,现在集中在要发展超临界蒸汽发电机组和整体煤气化联合循环技术上,这些技术对材料的要求都十分苛刻,如工程陶瓷,新型通道材料等;氢能和燃料电池:氢能生产,储存和利用所需的材料和技术,燃料电池材料等;绿色二次电池:镍氢电池,锂离子电池以及高性能聚合物电池等新型材料;太阳能电池:多晶硅,非晶硅,薄膜电池等材料;核能材料:新型核电反应堆材料.
新能源材料就材料种类主要包括专用薄膜,聚合物电解液,催化剂和电极,先进光电材料,特制光谱塑料和涂层,碳纳米管,金属氢化物浆料,高温超导材料,低成本低能耗民用工程材料,轻质,便宜,高效的绝缘材料,轻质,坚固,复合结构材料,超高温合金,陶瓷和复合材料,抗辐射材料,低活性材料,抗腐蚀及抗压力腐蚀裂解材料,机械和抗等离子腐蚀材料.当前研究热点和技术前沿包括高能储氢材料,聚合物电池材料,中温固体氧化物燃料电池电解质材料,多晶薄膜太阳能电池材料等.
3 生物材料
生物材料是和生命系统结合,用以诊断,治疗或替换机体组织,器官或增进其功能的材料.它涉及材料,医学,物理,生物化学及现代高技术等诸多学科领域,已成为21世纪主要支柱产业之一.
现在几乎所有类型的材料在健康治疗中都已得到应用,主要包括金属和合金,陶瓷,高分子材料,复合材料和生物质材料.高分子生物材料是生物医用材料中最活跃的领域;金属生物材料仍是临床应用最广泛的承力植入材料,医用钛及其合金,以及Ni-Ti形状记忆合金的研究与开发是一个热点;无机生物材料近年来越来越受到重视.
目前,国际生物医用材料研究和发展的主要方向,一是模拟人体硬软组织,器官和血液等的组成,结构和功能而开展的仿生或功能设计与制备,二是赋予材料优异的生物相容性,生物活性或生命活性.就具体材料来说,主要包括药物控制释放材料,组织工程材料,仿生材料,纳米生物材料,生物活性材料,介入诊断和治疗材料,可降解和吸收生物材料,新型人造器官,人造血液等.
4 汽车材料
汽车用材在整个材料市场中所占的比例很小,但是属于技术要求高,技术含量高,附加值高的三高产品,代表了行业的最高水平.
汽车材料的需求呈现出以下特点:轻量化与环保是主要需求发展方向;各种材料在汽车上的应用比例正在发生变化,主要变化趋势是高强度钢和超高强度钢,铝合金,镁合金,塑料和复合材料的用量将有较大的增长,汽车车身结构材料将趋向多材料设计方向.同时汽车材料的回收利用也受到更多的重视,电动汽车,代用燃料汽车专用材料以及汽车功能材料的开发和应用工作不断加强.
5纳米材料与技术
纳米材料及技术将成为第5次推动社会经济各领域快速发展的主导技术,21世纪前20年将是纳米材料与技术发展的关键时期.纳电子代替微电子,纳加工代替微加工,纳米材料代替微米材料,纳米生物技术代替微米尺度的生物技术,这已是不以人的意志为转移的客观规律.
纳米材料与科技的研究开发大部分处于基础研究阶段,如纳米电子与器件,纳米生物等高风险领域,还没有形成大规模的产业.但纳米材料及技术在电子信息产业,生物医药产业,能源产业,环境保护等方面,对相关材料的制备和应用都将产生革命性的影响..
6 超导材料与技术
超导材料与技术是21世纪具有战略意义的高新技术,广泛用于能源,医疗,交通,科学研究及国防军工等重大领域.超导材料的应用主要取决于材料本身性能及其制备技术的发展.
目前,低温超导材料已经达到实用水平,高温超导材料产业化技术也取得重大突破,高温超导带材和移动通讯用高温超导滤波子系统将很快进商业化阶段.
7 稀土材料
稀土材料是利用稀土元素优异的磁,光,电等特性开发出的一系列不可取代的,性能优越的新材料.稀土材料被广泛应用于冶金机械,石油化工,轻工农业,电子信息,能源环保,国防军工等多个领域,是当今世界各国改造传统产业,发展高新技术和国防尖端技术不可缺少的战略物资.
具体包括:稀土永磁材料:其是发展最快的稀土材料,包括NdFeB,SmCo等,广泛应用于电机,电声,医疗设备,磁悬浮列车及军事工业等高技术领域;贮氢合金:主要用于动力电池和燃料电池;稀土发光材料:有新型高效节能环保光源用稀土发光材料,高清晰度,数字化彩色电视机和计算机显示器用稀土发光材料,和特种或极端条件下应用的稀土发光材料等;稀土催化材料:发展重点是替代贵金属,降低催化剂的成本,提高抗中毒性能和稳定性能;稀土在其他新材料中的应用:如精密陶瓷,光学玻璃,稀土刻蚀剂,稀土无机颜料等方面也正在以较高的速度增长,如稀土电子陶瓷,稀土无机颜料等.
8新型钢铁材料
钢铁材料是重要的基础材料,广泛应用于能源开发,交通运输,石油化工,机械电力,轻工纺织,医疗卫生,建筑建材,家电通讯,国防建设以及高科技产业,并具有较强的竞争优势.
新型钢铁材料发展的重点是高性钢铁材料.其方向为高性能,长寿命,在质量上已向组织细化和精确控制,提高钢材洁净度和高均匀度方面发展.
9 新型有色金属合金材料
主要包括铝,镁,钛等轻金属合金以及粉末冶金材料,高纯金属材料等.
铝合金:包括各种新型高强高韧,高比强高比模,高强耐蚀可焊,耐热耐蚀铝合金材料,如Al-Li合金等;镁合金:包括镁合金和镁-基复合材料,超轻高塑性Mg-Li-X系合金等;钛合金材料:包括新型医用钛合金,高温钛合金,高强钛合金,低成本钛合金等;粉末冶金材料:产品主要包括铁基,铜基汽车零件,难熔金属,硬质合金等;高纯金属及材料:材料的纯度向着更纯化方向发展,其杂质含量达ppb级,产品的规格向着大型化方向发展.
10新型建筑材料
新型建筑材料主要包括新型墙体材料,化学建材,新型保温隔热材料,建筑装饰装修材料等.国际上建材的趋势正向环保,节能,多功能化方向发展.
其中玻璃的发展趋势是向着功能型,实用型,装饰型,安全型和环保型五个方向发展,包括对玻璃原片进行表面改性或精加工处理,节能的低辐射(Low—E)和阳光控制低辐射(Sun-E)膜玻璃等;此外,还包括节能,环保的新型房建材料,以及满足工程特殊需要的特种系列水泥等.
11新型化工材料
化工材料在国民经济中有着重要地位,在航空航天,机械,石油工业,农业,建筑业,汽车,家电,电子,生物医用行业等都起着重要的作用.
新型化工材料主要包括有机氟材料,有机硅材料,高性能纤维,纳米化工材料,无机功能材料等;纳米化工材料和特种化工涂料是近年来的研究热点.精细化,专用化,功能化成了化工材料工业的重要发展趋势.
12生态环境材料
生态环境材料是在人类认识到生态环境保护的重要战略意义和世界各国纷纷走可持续发展道路的背景下提出来的,一般认为生态环境材料是具有满意的使用性能同时又被赋予优异的环境协调性的材料.
这类材料的特点是消耗的资源和能源少,对生态和环境污染小,再生利用率高,而且从材料制造,使用,废弃直到再生循环利用的整个寿命过程,都与生态环境相协调.主要包括:环境相容材料,如纯天然材料(木材,石材等),仿生物材料(人工骨,人工器脏等),绿色包装材料(绿色包装袋,包装容器),生态建材(无毒装饰材料等);环境降解材料(生物降解塑料等);环境工程材料,如环境修复材料,环境净化材料(分子筛,离子筛材料),环境替代材料(无磷洗衣粉助剂)等.
生态环境材料研究热点和发展方向包括再生聚合物(塑料)的设计,材料环境协调性评价的理论体系,降低材料环境负荷的新工艺,新技术和新方法等.
13 军工新材料
军工材料对国防科技,国防力量的强弱和国民经济的发展具有重要推动作用,是武器装备的物质基础和技术先导,是决定武器装备性能的重要因素,也是拓展武器装备新功能和降低武器装备全寿命费用,取得和保持武器装备竞争优势的原动力.
随着武器装备的迅速发展,起支撑作用的材料技术发展呈现出以下趋势:一是复合化:通过微观,介观和宏观层次的复合大幅度提高材料的综合性能;二是多功能化:通过材料成分,组织,结构的优化设计和精确控制,使单一材料具备多项功能,达到简化武器装备结构设计,实现小型化,高可靠的目的;三是高性能化:材料的综合性能不断优化,为提高武器装备的性能奠定物质基础;四是低成本化:低成本技术在材料领域是一项高科技含量的技术,对武器装备的研制和生产具有越来越重要的作用.
⑤ 新材料产业的国内发展
新材料产业在产业体系中占有重要地位。在化工新材料、轻金属材料、陶瓷材料、复合材料、石墨材料、建筑材料、纳米材料等领域,产品及技术水平具有特色与优势,初步形成了以大庆为中心的化工新材料生产基地,以牡丹江为主的特种陶瓷材料产业基地,以中心城市为主的建筑材料产业基地,以东北轻合金有限责任公司和东安发动机集团有限公司为龙头的铝镁合金材料产业化基地,以黑河、绥化为中心的硅基材料生产基地。在纳米材料、玻璃钢、石墨材料、焊接材料等方面正在逐步形成产业基地和产业集群。
随着全球家电、电脑、电动工具和玩具等产能加速向我国转移,为此,我国正逐渐成为全球改性塑料最大的潜在市场和主要需求增长动力。
我国改性塑料行业经过20多年的发展,已形成填充母料、各种功能母料和改性专用塑料产能达数百万吨,成为我国塑料工业实力强劲的一支重要生力军,并在学术、技术和产业等方面,成为最为活跃、最具发展前景的领域之一,为我国塑料工业持续快速发展乃至整个国民经济的发展做出了突出贡献。
近年来,我国改性塑料行业随着国民经济的发展而继续保持较快发展,改性塑料产量也由2000年的32万吨上升至2008年的340万吨,年复合增长率为34.37%,表观消费量由2000年的72万吨上升至2008年的392万吨,年复合增长率为23.59%,到2011年,我国改性塑料产量约为750万吨,预计2012年可达853万吨。
⑥ 可降解生物医用镁合金的行业分析
可降解生物材料因植入生物体后可在体内不断分解、且分解产物能被生物体所吸收或排出体外,已成为当前生物材料领域的国际研究前沿与热点。目前在骨植入材料中应用较多的可降解生物材料主要是高分子聚合物如聚乳酸(PLA)、聚羟基乙酸(PGA),然而这些材料的强度一般较低,很难承受较大的负荷,而且降解产物呈酸性,容易引起炎症。镁及其合金不仅具有良好的力学性能,而且对人体无毒、通过腐蚀可在体内逐步降解,因而作为一种极有发展潜力的可降解植入生物材料日益受到人们的青睐。但是现有的镁合金在生理环境下降解速率太快,往往在骨组织没有愈合就失去了应有的承载能力。所以制备出既有一定力学性能,又具有较好耐腐蚀性的镁合金,具有较高的实用价值。
1.镁合金生物材料的研究现状
镁及其合金可用做可降解生物材料,但是其高的腐蚀速率是一个焦点问题。H,Wang等用三种不同手段加工出来的AZ31在Hank模拟体液中浸泡1、2、5、10、15、20天,然后称重,用光学显微镜观察形貌,用TEM观察显微结构,结果表明,通过机械处理,AZ31在Hank溶液中生物降解速率明显降低。德国汉诺威尔大学F·Witte等人对AZ31、AZ91、WE43、LAE442进行了在活猪体内植入试验,研究了不同可降解镁合金在骨环境中界面降解机制及合金降解速率,得到镁合金的降解取决于合金元素,植入的四种合金都与骨结合良好,并且得到镁离子对骨生长有诱导作用,只是合金降解过快,导致皮下产生氢气气泡;香港城市大学研究了AZ63在模拟体液中的降解情况,并研究热处理对降解情况的对比,通过比较得出,430℃在空气中保存24小时T4处理后,合金的降解速率是铸态合金的1/2[21];北京大学郑玉峰系统研究了Mg-1x(x为Zn、Mn、Al、Si、Ag、Zr、Y、ln)二元合金的组织性能、力学性能、耐腐蚀性能、细胞毒性、血液相容性,通过研究得到,添加Al,Si,Sn,Zn或Zr元素能改善合金的力学性能,添加Al,In,Mn,Zn,或Zr元素能降低合金在模拟体液和汉克斯溶液中的腐蚀速率,Si和Y合金元素却加速了合金的腐蚀[23-24]等等。目前通过动物实验等,正在推进镁合金作为生物医用材料的应用。
2.镁合金生物材料的发展趋势
迄今为止,被详细研究过的生物材料已有一千多种,医学临床上广泛使用的也有几十种,涉及到材料学的各个领域。目前生物医学材料研究的重点是在保证安全性的前提下寻找组织相容性更好、耐腐蚀、持久性更好的多用途生物医学材料。其发展趋势必然要求:
(1)提高生物医学材料的组织相容性,增加材料与活体组织之间相互容纳的程度,避免材料周围组织的局部反应;
(2)金属材料在生物医用材料中的应用将越来越广泛,金属生物医学材料的应用已有较长的历史,随着科学技术的发展和外科医疗水平的提高,先后开发了不锈钢、钴合金、工业纯钛及钛合金等一系列金属生物医学材料;
(3)生物医学材料的治疗特性增强,生物医学材料的发展不仅局限于作为人体相应器官的假体和代用品,利用多种学科的交叉研制具有治疗特性的生物医学材料也是未来的重要方向;
(4)具有多种特殊功能生物材料的研制和应用,对合金进行深加工,使其具备多种功能,满足不同情况的需求,也是未来生物医用材料的发展趋势之一。
3.镁合金生物材料研究意义及应用展望
镁及镁合金具有比强度和比刚度较高、生物可降解吸收性等特点,作为现有金属生物植入材料的新一代替代产品表现出巨大的优势与潜力,已经引起国内外越来越多研究者的关注,但由于人体环境的复杂性,这种新材料的研究还需一个长期过程。生物医用材料的研究与开发对国民经济和社会的发展具有极其重要的意义,生物医用材料具有很高的附加值,其每公斤达1200-150000美元,而建筑材料仅为0.1-1.2美元,宇航材料也仅100-1200美元。
随着人口老龄化和各类创伤的增加,近几年来生物医用材料和制品的市场一直保持20%左右的年增长率,发展态势已可以与信息和汽车产业在世界经济中的地位相比,正在成长为本世纪世界经济的一个支柱,对国民经济的发展有着不可忽视的重要作用。例如,随着人口老龄化和中青年创伤的增加,对生物医学材料和制品的需求持续增长。在我国,人口老龄化已成为社会问题,同时中、青年创伤高速增加,生物医学材料及制品存在着巨大的潜在市场,特别是随着国民经济的发展和人民生活水平的提高,对生物医学材料和制品的需求急速增高。
因此对于我国发展医用金属材料是一个趋势。伴随着新型金属材料的研制和表面改性技术的采用,生物医用金属材料腐蚀研究又开辟了新的研究和发展空间;镁合金具有足够的强度,良好的生物相容性和体内可降解性,有望成为新型骨植入材料。但是它的力学性能不够,且耐蚀性较差;不含对人体有害元素的合金,其力学性能相对钛合金、不锈钢等医用合金强度低,不能用于承载部位;作为骨植入材料,其目的是维持骨折复位、重建后的稳定,因此从力学角度考虑要求其在骨组织完全愈合之前必须保持原有力学性能基本不变。
可降解生物医用镁合金相对于传统金属医用材料来说,具有无可比拟的优越性,如作为骨内植物,可有效避免应力遮挡效应,并可避免骨折痊愈后二次手术给病人带来的痛苦和费用;作为心血管支架材料,可有效减少血管内膜增生、再狭窄、晚期血栓等问题。因此,被誉为“革命性的金属生物材料”而受到全球高度瞩目。
尽管目前已有动物体内及人体临床实验,然而绝大多数为商用镁合金,缺乏生物安全性。作为生物医用材料,在设计时必须考虑材料的生物安全性、强韧性、耐蚀性(特别是类似于均匀腐蚀降解方式)。因此,需要设计具有生物安全性、高强韧性、耐蚀性和腐蚀均匀性的新型生物医用镁合金;需要对其强韧性设计制备理论、在体内的降解代谢机制及体内降解产物的生物安全性、降解行为的可控性等方面进行系统深入的研究,进而为可降解生物医用镁合金的临床医学应用提供更加可靠的科学依据。上海交通大学轻合金精密成型国家工程研究中心团队近年来在上述领域进行了一些有益的探索,并取得了令人鼓舞的进展。相信经过科研工作者的不断努力探索,可降解生物医用镁合金一定会有光明的应用前景,成为惠及人类健康的新型金属生物材料。
参考文献
[1]李世谱.生物医用材料导论M.武汉理工大学出版社.2000:20–40.
[2]R.J.Schultz,TheLanguageofFractures,2nded.WilliamsandWilkins,1990,p.27.
[3]D.F.Williams,D.M.Brunette,P.Tengvall,etal.TitaniuminMedicine[J].Springer,2001,p.15.
[4]R.McRae.PracticalFractureTreatment,3rded.,ChurchillLivingstone,1994,p.91.
⑦ 镁合金有什么用途
主要应用领域::1) 航空航天工业、军工领域、交通领域(包括汽车工业、飞机工业、摩托车工业、自行车工业等)、3C领域等。 镁合金的特点可满足于航空航天等高科技领域对轻质材料吸噪、减震、防辐射的要求,可大大改善飞行器的气体动力学性能和明显减轻结构重量。从20世纪40年代开始,镁合金首先在航空航天部门得到了优先应用。B-36重型轰炸机每架用4086kg镁合金簿板;洛克希德F-80喷气式歼击机镁板机翼,使结构零件从47758个减少到16050个;“大力神”火箭使用了600kg的变形镁合金;“季斯卡维列尔”卫星中使用了675kg的变形镁合金; 直径约1米的“维热尔”火箭壳体是用镁合金挤压管材制造的。我国的歼击机、轰炸机、直升机、运输机、民用机、机载雷达、地空导弹、运载火箭、人造卫星、飞船上均选用了镁合金构件:一个型号的飞机最多选用了300-400项镁合金构件;一个零件的重量最重近300kg;一个构件的最大尺寸达2m多。在军工方面需要镁合金板材以提高结构件强度,减轻装备重量,提高武器命中率。
2)国防工业领域 ,由于镁及镁合金耐冲击,如果能够开发出与铝合金耐蚀性能相当的镁合金,则其在兵器等各种军用领域将有着广阔的应用前景。如照明弹用镁粉、穿甲弹用高比强度镁合金弹托材料,以及可用变形镁合金制造的战术航空导弹舱段、副翼蒙皮、壁板和雷达、卫星上用的镁合金井字梁、相机架和外壳等零件。 武器轻量化是现代兵器的发展趋势,利用镁合金取代现有武器上的一些零部件正成为各国研究的热点。有关单位已分别通过锻造或铸造成型方式开发出了变形镁合金冲锋枪机匣、枪尾、提把、前扶手、枪托体、大托弹板、瞄具座、小弹匣座以及军用铸造合金发动机进出水管和发动机滤座等军品武器用零部件,其中部分对耐蚀耐磨有较高要求的军用镁合金零部件还被通过协和涂层的方法进行了相应的表面处理。目前,这些研制生产出的军用镁合金零部件已进入实际演示验证和考核阶段,预计不久将得到初步应用。
3)镁合金在汽车工业的应用,镁合金汽车零件的好处可简单归纳为:密度小,可减轻整车重量,间接减少燃油消耗量;镁比强度高于铝合金和钢,比刚度接近铝合金和钢,能承受一定负荷;镁具有良好的铸造性和尺寸稳定性,容易加工,废品率低;镁具有较高阻尼系数,减振量大于铝合金和铸铁,用于壳体可降低噪声,用于座椅、轮圈可以减少振动,提高汽车的安全性和舒适性。早在1930年镁合金就用于一辆赛车上的活塞和欧宝汽车上的油泵箱。上世纪六十年代在有的车上用量达到23千克,主要用作阀门壳、空气清洁箱、制动器、离合器、踏板架等;上世纪八十年代初,严格控制铁、铜、镍等杂质含量,镁合金的耐蚀性得到了解决,同时,成本下降又大大促进了镁合金在汽车上的应用。从上世纪九十年代开始,欧美、日、韩开始把镁合金用于汽车零件上。镁合金压铸件在汽车上的应用已经显示出长期的增长态势。在过去十年里,其年增长速度超过15%。在欧洲,已经有300种不同的镁制部件用于组装汽车,每辆欧洲生产的汽车上平均使用2.5kg镁。每辆汽车对镁的需求将提高至70—120kg。目前,汽车仪表、座位架、方向操纵系统部件、引擎盖、变速箱、进气歧管、轮毂、发动机和安全部件上都有镁合金压铸产品的应用。
重庆长安集团公司:完成了JL462Q发动机变速器上、下壳体用镁合金替代铝合金的产品试制,已形成年产1500t汽车变速器压铸的生产能力。2003年底,变速器上下壳体、箱体延伸体和缸罩等7个零件已批量装车,并通过了小批量装车试验,目前正在进行批量生产前的最后中批量装车考核中;此外,该公司还打算用镁合金取代更多的零部件,如方向盘、座椅内架等,逐步使每辆车用量达到20Kg。一汽集团:试制成功了气门室罩盖、变速箱盖、发动机油喷等镁合金压铸件,其中气门室罩盖已通过装车试验。东风汽车公司:以镁合金变速箱上盖的产业化应用为重点突破对象,完成了10万次规范的台架试验,并顺利通过考核;同时对已装车的真空助力器中间隔板、左右脚踏步的应用情况调查表明其应用效果良好。
总结镁合金的应用领域很广,至于其他的应用领域用途整理如下:
航空航天领域: 飞机:机身、发动机
导弹、宇宙探查:火箭、发射台、卫星及探查、喷气发动机
仪器:陀螺仪、罩、雷达零件及波导管、电气装置、
地面控制装置
原子能产业: 外壳密封装置、辅助设备
运输领域: 汽车、卡车:变速箱体、曲轴箱、传动箱、油盘、缸盖、轮毂、转向盘、刹车中踏板支架、车锁壳体
自行车、摩托车:链条罩、制动片、前导流罩、发动机零件、传动箱盖
物流设备:爪卡盘及传动装置、大型敏捷用具、台车
机械工具:链锯及钻机、工艺装备板、水平仪等
纺织机: 高速经轴、控制杆
印刷: 底版、滚筒、印刷板
办公用品机器:打字机零件、电传打印机盖、计算机、笔记本电脑
光学仪器:照相机壳、磁带卷轴、摄像机、电视、投影机
消费用品:梯子、吸尘器零件、椅子、大型旅行箱架、眼镜、助听器、车椅、拐杖
等等的太多东西了,几乎可以取代塑料,铝合金,与锌合金等等金属。
⑧ 镁合金材料有什么特点
在刚刚出版的《自然》杂志中,香港城市大学副校长吕坚、浙江大学朱林利副教授等中国科学家联合发表的论文《采用双相纳米结构制成高强度镁合金材料》。
在这篇重磅论文中,几位中国科学家介绍了他们研制的一种高强度镁合金材料——这种材料的强度,超过了所有已知镁基纳米材料,并接近理论上镁基合金的强度极限。
在公众看来,镁合金似乎没有铝合金那样有名。其实,小到一分钱的硬币、手机笔记本电脑的外壳,大到飞机火箭都离不开镁合金材料。镁合金材料具有重量轻、性能良好,易于加工等诸多优势,一直是材料学的研究热点。
这种新型纳米材料是由单个不足 10纳米的具有“外壳”的颗粒组成,单个颗粒核心成分是镁:铜=2:1(原子数比例,以下同)的典型晶体组成,外壳据估算是由镁:铜:钇=69:11:20的典型非晶态金属构成。整体的合金材料可以写成镁49铜46钇9的形式。通过检测目前得到的薄层材料,可以确定这种双相纳米镁基合金材料强度达到了3.3吉帕,超过了所有已知镁基纳米材料并接近了理论上镁基合金的极限。
⑨ 镁合金的优势在哪镁材料的应用在哪
镁合金和塑料比怎么样?
镁合金具有重量轻、比强度高、减震性好、热疲劳性能好、不易老化,又有良好的导热性、电磁屏蔽能力强、非常好的压铸工艺性能,尤其易于回收等优点,是替代钢铁、铝合金和工程塑料的新一代高性能结构材料。
镁材料的应用在哪?
为适应电子、通讯器件高度集成化和轻薄小型化的发展趋势,镁合金是交通、电子信息、通讯、计算机、声像器材、手提工具、电机、林业、纺织、核动力装置等产品外壳的理想材料。发达国家非常重视镁合金开发与应用,尤其在汽车零部件、笔记本电脑等便携电子产品的应用,每年以20%的速度增长,非常引人注目,发展趋势惊人。
镁合金是什么材料做的、和塑料比怎么样,有哪些特点优势及价格?
更多精彩的镁合金信息,大家可以关注百业网络