导航:首页 > 股市分析 > 卢卡斯数列股市

卢卡斯数列股市

发布时间:2021-08-15 12:21:24

① 关于卢卡斯数列和费波拿契数列恒式

卢卡斯数列卢卡斯数列 (Lucas Sequence) 和费波拿契数列 (Fibonnacci Sequence) 有莫大的关系。
先定义整数 P 和 Q 使 D = P2 - 4Q > 0,
从而得一方程 x2 - Px + Q = 0,其根为 a, b,
现定义卢卡斯数列为:
Un(P,Q) = (an - bn) / (a-b) 及 Vn(P,Q) = an + bn
其中 n 为非负整数,得 U0(P,Q) = 0、 U1(P,Q) = 1 、 V0(P,Q) = 2 、 V1(P,Q) = P、......
我们有下列和卢卡斯数列相关的恒等式:
Um+n = UmVn - anbnUm-n 、 Vm+n = VmVn - anbnVm-n
Um+1 = P*Um - Q*Um-1 、 Vm+1 = P*Vm - Q*Vm-1 (取 n = 1)
U2n = UnVn 、 V2n = Vn2 - Qn
U2n+1 = Un+1Vn - Qn 、 V2n+1 = Vn+1Vn - PQn
若取 (P,Q) = (1,-1),我们便有 Un 为费波拿契数,
即 0、 1、 1、 2、 3、 5、 8、 13、 21、 34、 55、 89、 144、 233、 377、 610、 987、 1597、 2584、 4141、 6765等。
而 Vn 为卢卡斯数 (Lucas Number),
即 2、 1、 3、 4、 7、 11、18、 29、 47、 76、 123、 199、 322、 521、 843、 1364、 2207、 3571、 5781、 9349 等。
若取 (P,Q) = (2,-1),我们便有 Un 为佩尔数 (Pell Number),
即 0、 1、 2、 5、 12、 29、 70、 169、 408、 985、 2378、 5741等。
而 Vn 为佩尔 - 卢卡斯数 (Pell - Lucas Number) (详见另文《佩尔数列》),
即 2、 2、 6、 14、 34、 82、 198、 478、 1154、 2786、 6726等。
此等全都是数学界很有名的数列。
卢卡斯数的性质
卢卡斯数 (简记 Ln) 有很多性质和费波拿契数很相似。如 Ln = Ln-1 + Ln-2,其中不同的是 L1 = 1、 L2 = 3。
所以卢卡斯数有:1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ...... (OEIS A000204),当中的平方数只有 1 和 4,这是由哥恩 (John H. E. Cohn) 证明的。而素数,即卢卡斯素数 (Lucas Prime) 则有: 3, 7, 11, 29, 47, ...... 。当中现在知道最大的拟素数 (Probable Prime) 为 L574219 ,此数达 120005位之多。
我们有下列和卢卡斯数相关的恒等式:
Ln2 - Ln-1Ln+1 = 5 (-1)n
L12 + L22 + ...... + Ln2 = LnLn+1 - 2
Lm+n = (5FmFn + LmLn) / 2 (式中的 Fn 为费波拿契数)
Lm-n = (-1)n (LmLn - 5FmFn) / 2
Ln2 - 5Fn2 =4 (-1)n
若我们考虑的是拟素数,即那些通过费马小定理 (Fermat's Little Theorem) 逆命题测试的数,这有很大机会是素数,或可能是卡迈克尔数 (Carmichael Number)。那我们可把 n 推至 202667。但正因为 n 很大,要判断该数的素性的确不易。

② 卢卡斯数列和斐波那契数列之间有什么关系

卢卡斯数 (简记 Ln) 有很多性质和斐波那契数很相似。如 Ln = Ln-1 + Ln-2,其中不同的是 L1 = 1、 L2 = 3。

用文字来说,就是斐波那契数列由0和1开始,之后的斐波那契数就由之前的两数相加...斐波那契数列是卢卡斯数列的特殊情况。或是斐波那契n步数列步数为2的情形。 ...
http://ke..com/view/1327998.htm

③ 卢卡斯数列是斐波那契数列的推广吗

④ 卢卡斯数列之间也存在0.618的关系吗

f(n-1)/f(n)-→0.618…

⑤ 卢卡斯数列的数列性质

卢卡斯数 (简记 Ln) 有很多性质和斐波那契数很相似。如 Ln = Ln-1 + Ln-2,其中不同的是 L1 = 1、 L2 = 3。
所以卢卡斯数有:1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ...... (OEIS A000204),当中的平方数只有 1 和 4,这是由哥恩 (John H. E. Cohn) 证明的。而素数,即卢卡斯素数 (Lucas Prime) 则有: 3, 7, 11, 29, 47, ...... 。当中现在知道最大的拟素数 (Probable Prime) 为 L574219 ,此数达 120005位之多。
我们有下列和卢卡斯数相关的恒等式:
Ln2 - Ln-1Ln+1 = 5 (-1)n
L12 + L22 + ...... + Ln2 = LnLn+1 - 2
Lm+n = (5FmFn + LmLn) / 2 (式中的 Fn 为斐波那契数)
Lm-n = (-1)n (LmLn - 5FmFn) / 2
Ln2 - 5Fn2 = 4 (-1)n

⑥ 卢卡斯数列的有关资料

卢卡斯数列 (Lucas Sequence) 和费波拿契数列 (Fibonnacci Sequence) 有莫大的关系。故本人在介绍费波拿契数以後也得为卢卡斯数列多添一章。 先定义整数 P 和 Q 使 D = P2 - 4Q > 0, 从而得一方程 x2 - Px + Q = 0,其根为 a, b, 现定义卢卡斯数列为: Un(P,Q) = (an - bn) / (a-b) 及 Vn(P,Q) = an + bn 其中n 为非负整数,得 U0(P,Q) = 0、 U1(P,Q) = 1 、 V0(P,Q) = 2 、 V1(P,Q) = P、...... 我们有下列和卢卡斯数列相关的恒等式: Um+n = UmVn - anbnUm-n 、 Vm+n = VmVn - anbnVm-n Um+1 = P*Um - Q*Um-1 、 Vm+1 = P*Vm - Q*Vm-1 (取 n = 1) U2n = UnVn 、 V2n = Vn2 - Qn U2n+1 = Un+1Vn - Qn 、 V2n+1 = Vn+1Vn - PQn 若取(P,Q) = (1,-1),我们便有 Un 为费波拿契数, 即0、 1、 1、 2、 3、 5、 8、 13、 21、 34、 55、 89、 144、 233、 377、 610、 987、 1597、 2584、 4141、 6765等。 而Vn 为卢卡斯数 (Lucas Number), 即2、 1、 3、 4、 7、 11、18、 29、 47、 76、 123、 199、 322、 521、 843、 1364、 2207、 3571、 5781、 9349 等。 若取(P,Q) = (2,-1),我们便有 Un 为佩尔数 (Pell Number), 即0、 1、 2、 5、 12、 29、 70、 169、 408、 985、 2378、 5741等。 而Vn 为佩尔 - 卢卡斯数 (Pell - Lucas Number) (详见另文《佩尔数列》), 即2、 2、 6、 14、 34、 82、 198、 478、 1154、 2786、 6726等。 此等全都是数学界很有名的数列。 卢卡斯数的性质 卢卡斯数 (简记 Ln) 有很多性质和费波拿契数很相似。如 Ln = Ln-1 + Ln-2,其中不同的是 L1 = 1、 L2 = 3。 所以卢卡斯数有:1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ...... (OEIS A000204),当中的平方数只有 1 和 4,这是由哥恩 (John H. E. Cohn) 证明的。而素数,即卢卡斯素数 (Lucas Prime) 则有: 3, 7, 11, 29, 47, ...... 。当中现在知道最大的拟素数 (Probable Prime) 为 L574219 ,此数达 120005位之多。 我们有下列和卢卡斯数相关的恒等式: Ln2 - Ln-1Ln+1 = 5 (-1)n L12 + L22 + ...... + Ln2 = LnLn+1 - 2 Lm+n = (5FmFn + LmLn) / 2 (式中的 Fn 为费波拿契数) Lm-n = (-1)n (LmLn - 5FmFn) / 2 Ln2 - 5Fn2 = 4 (-1)n 卢卡斯素数龙虎榜 n 数位 发现者 年份 56003 11704 欧文 (Sean A. Irvine) / 禾达 (Bouk de Water) 2006 51169 10694 禾达 (Bouk de Water) / 布靴斯特 (David Broadhurst)2001

记得采纳啊

⑦ 卢卡斯数列的前两项是多少

卢卡斯数列就是以1、3为前两项的斐波那契数列
前十项为1、3、4、7、11、18、29、47、76、123

⑧ 卢卡斯数列在炒股软件里怎么添加

不相信炒股软件

⑨ 卢卡斯数列和斐波那契数列的区别

卢卡斯数列和斐波那契数列:数列表达式 Fn=Fn-1 + Fn-2
不同的是两者的通用项表达式:卢卡斯数列: f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n 数列:1 3 4 7 11 18;斐波那契数列(又称黄金分割数列): f(n)=1/√5[(1+√5)/2]^n-[(1-√5)/2]^n 数列:1 1 2 3 5 8

阅读全文

与卢卡斯数列股市相关的资料

热点内容
融资对象分 浏览:728
凯裕金银贵金属 浏览:394
展博投资管理 浏览:980
壹理财下载 浏览:144
贵金属看盘技术 浏览:930
外汇ea三角套利 浏览:389
宝盈转型动力基金今日净值查询 浏览:311
abl外汇软件 浏览:817
天使投资移动互联网 浏览:315
中翌贵金属老是系统维护 浏览:225
历史期货松绑 浏览:23
信托借款平台 浏览:214
吉林纸业股票 浏览:324
贵金属元素分析仪 浏览:30
融资打爆仓 浏览:645
分级基金A还能玩吗 浏览:289
网络贷款平台大全 浏览:358
13月房地产到位资金 浏览:744
姚江涛中航信托 浏览:518
coding融资 浏览:357