导航:首页 > 股市分析 > 天然气压缩机能耗计算分析软件

天然气压缩机能耗计算分析软件

发布时间:2021-08-22 20:22:08

Ⅰ 如何选择cng压缩机

CNG加气站压缩机的选择
作者:康志刚 杨慧 来源:天然气(煤层气)与管道网 浏览次数:1次

Choice of Compressor in CNG Fueling Station
KANG Zhi-gang,YANG Hui
Abstract:The general technical situation of natural gas compressor in CNG fueling station in China,the assessment standard for the compressor choice and the technical points are discussed.
Key words:CNG fueling station;compressor;structural type;air-flow pulsation;lubrication mode;cooling mode
1 概述
随着全球石油资源的日趋短缺以及对环保节能的新要求,天然气在车用能源上的优势日显突出。我国在20世纪80年代后期,由四川石油管理局引进第一台成套天然气加气和车辆改装设备。截至2006年,我国已经建成了不同类型的天然气加气站(CNG站)逾700座,拥有天然气汽车逾30×104辆。随着陕一京线、西气东输、忠武线等大型输气管道的陆续投入运行,我国的CNG汽车加气站的发展将迎来新的机遇。笔者在平时的设计工作中,接触的进口的压缩机品牌分别有美国Ariel、加拿大IMW、意大利Safe、意大利Fornovo Gas,国产的压缩机品牌分别有自贡通达、重压、四川金星、安瑞科等。
天然气压缩机作为CNG加气站最主要的核心设备,其采用的技术与很多基础机械工业相关。无论是设计理念、材质、热处理技术、加工精度都必须要达到很高的水平,以压缩机的连杆为例,不仅要考虑到它的负载特征,还要对其运行的温度作严格的限制。因此,在确定气体组成、进气压力、排气压力等重要参数后,还必须使用专用设计软件对压缩机的各项参数进行计算,在合理的温度条件、合理的连杆负载下核实其负载能力。在这方面我国压缩机制造水平与国际先进水平相比,特别是与国外大型压缩机公司相比,还有很多可学之处。
国内使用的天然气压缩机在气缸布局上是以W型、V型、D型、L型为主,排气量为300~1500m3/h,也有排气量在1500m3/h以上的机型,冷却方式为水冷或混冷(压缩天然气采用风冷,气缸与润滑油采用闭式循环水冷)。国外天然气设备成橇商陆续进入中国,也给国内带来了先进的压缩机技术,压缩机大排气量、小体积、少油润滑、全自动运行、风冷技术等都反映了当今的国际先进水平。随后国产压缩机也不断地学习和开发研究,部分产品已经开始推广使用,但其技术水平与国外先进水平仍然有一定的差距。
2 压缩机选择的评估标准
2.1 制造标准
在各国的制造标准中,设立最早并且最为完善的是美国石油协会API 618《石油、化工和气体工业往复式压缩机》标准,其标准号为API 618—2008。相对于其他制造标准,该标准对制造商的设备性能提出了很多的约束条件,以保证用户使用设备的安全性和稳定性。
2.2 适用性
设计应与应用条件一致,系统才能高效率运行。
① 设计的吸气压力、排气压力、气体流量应满足需要,确保加气量和加气速度满足用户需要。
② 系统各部分的性能应匹配,特别是压缩机、电机、冷却系统、控制系统、过滤回收系统之间的性能应匹配。
③ 系统设计应满足实际运行环境,特别是冷却系统。目前压缩机风冷技术是国际发展趋势。
2.3 可靠性
系统和各元件的质量可靠,减少维护费用和停机检修时间。这一点往往容易被用户忽略。质量一流的部件是创造系统高可靠性的重要保证,这包括:
① 压缩机,其中包括缸体、连杆、活塞和气阀等。
② 用于驱动压缩机和冷却风扇的电机。
③ 仪器、仪表、手动或自动阀门、调压阀、安全阀、各种压力和温度传感器及开关等。
④ 稳定高效的控制系统。
⑤ 易损件,其寿命应保证长时间运行,少油润滑压缩机应保证8000h。
2.4 安全性
系统的安全性由压缩机每个元件所设立的安全措施来进行保障。它包括:
① 系统的泄压阀。
② 系统入口的自动切断阀。
③ 系统压力容器和主要管道要设立安全阀。
④ 压缩机的各级之间和出口应有温度和压力传感器。
⑤ 压缩机应装有振动保护开关。
⑥ 电机应装有过流过载保护装置。
⑦ 系统中的电气设备必须满足防爆要求。
2.5 经济性
系统的经济性可以通过以下的指标进行衡量:
① 系统的能耗指标,特别是压缩机组主电机的能耗,这是加气站的主要运行成本。我们在压缩机选型时,通常的做法是在同样的入口压力条件下,对不同型号压缩机的单位能耗进行对比,在这个过程中通常进口设备有较大的优势。
② 冷却方式也对设备的经济性有较大的影响。现在公认风冷是CNG压缩机发展的方向。一般风冷却器的制造费用是水冷却器制造费用的1.5倍。而在寿命期内,水冷却器的维护费用是风冷却器的几倍甚至更多,还要建水处理装置等,而且对锈蚀和水垢的处理仍然无法彻底解决。
③ 易损件的使用寿命决定了压缩机无故障运行的时间。如果易损件寿命短,将会增加设备的停机维护时间、人员的工作量、零件的采购费用,从而增加运行成本。
3 CNG压缩机选型的技术要点
3.1 压缩机结构型式
天然气压缩机结构型式多为w型、L型,曲轴为常曲拐设计,导致往复运动部件——活塞、活塞环、活塞杆、填料、十字头均易产生偏磨,造成压缩气体泄漏、气体含油量增加。由于其体积流量和功率等级很难达到大型要求,角度式天然气压缩机以中小型为主,在实际运用中排气量多在3000m3/h以下。
随着越来越多的国内用户引进国外的天然气压缩机,我们选用了更为先进的水平对称式压缩机。该机型气缸为水平对称平衡式结构,曲轴互成180°,使得惯性力、惯性力矩均平衡,而且切向力十分均匀,因此,振动非常小,运转平稳,运行噪声低。相对于角度式天然气压缩机,对称平衡式压缩机的转速更高,活塞环、填料的工作条件较好,现在是国内大排气量天然气加气母站和标准站用天然气压缩机的主导结构型式。
3.2 润滑方式
选择有油润滑还是无油润滑压缩机,一直困扰着许多的用户。从目前国内对国产和进口压缩机的使用情况来看,少油润滑压缩机是天然气压缩机的发展趋势。这是因为少油润滑压缩机在运行过程中润滑油参与气缸和填料函的动作,保证了压缩机在高转速(1500r/min)下易损件的寿命,且润滑油也参与了气缸的密封、清洁和降温。如进口少油润滑压缩机的易损件寿命都达到8000h以上,甚至能达到16000h。
大部分的无油润滑压缩机由于需要考虑气缸的磨损以及摩擦热的问题,只能保证压缩机在低转速(1000r/min)下运行,即使这样还是不能保证易损件的寿命。通常无油润滑压缩机的易损件寿命为4000h,有些国产压缩机的易损件寿命只能达到2000h甚至更低,而且在填料函和活塞环过早损坏后,曲轴箱润滑油也进入气缸,导致气体含油量增大。
3.3 气流脉动和振动
这是很多用户在选择压缩机时容易忽视的问题之一。气流脉动也是往复式压缩机都必须解决的一个问题,过大的气流脉动会引起压缩机的振动,对整个橇体内的元件造成损伤。API 618《石油、化工和气体工业往复式压缩机》第3.9条对气流脉动和振动的消除作了明确的规定,用户在采购压缩机时可以要求制造商提供脉动分析报告,并且要明确气流脉动装置的设置。
3.4 冷却方式
笔者通过对国内外多款压缩机的实际运行状况的分析认为,要消除水冷压缩机的固有弊病,较好的办法是选择全风冷压缩机。有的企业认为,水冷或混冷的压缩机冷却效果要优于风冷。这种看法是不全面的。CNG压缩机在国外已经有逾70年的历史,从最初的水冷、风冷两种冷却方式并存,演化到现今以风冷为主流。这说明:①国外成熟压缩机技术更倾向采用风冷,由于很好地控制了压缩机各级的压缩比,并不存在排气温度过高的问题。②国内由于CNG压缩机领域的技术相对滞后,在宣传中夸大水冷机组的表面好处,却回避了水冷机组的许多不足:结垢、腐蚀增加运行成本等。
实践证明,很多进口全风冷压缩机的压缩工艺流程设计的合理性保证了每级气缸的排气温度不超过160℃,在实际运行中有的气缸排气温度不到100℃,在分级冷却后出口温度高于环境温度的值小于15℃,冷却效果非常明显。
4 结语
作为天然气加气站的核心设备,用户在天然气压缩机的选型和购买过程中,不要只注重压缩机排气量是否满足生产需求、价格是否足够低廉,还应该从制造标准、结构形式、维护费用等各方面综合考虑设备性能,确保加气站投产后的正常运营和预期收益。

(本文作者:康志刚 杨慧 武汉市燃气热力规划设计院 湖北武汉 430015)

Ⅱ 鸿业全年负荷计算及能耗分析软件 怎么导入天正建筑图纸

你可以查看下,房间基本参数中,冬季参数中热负荷类型选择的是个类型。
如果选择的是采暖热负荷,则软件计算外窗缝隙,不计算新风。
如果选择的是空调热负荷,刚软件计算新风,不计算外窗缝隙。

Ⅲ 按功率,如何计算燃气压缩机价格

压缩机功率计算方法可以从不同的角度来计算,所以其计算方法有很多,也可以估算。 1.如果知道电动机的功率,可以乘以0.8,得出压缩机功率。 2.实际上任何机器的功率P都可以利用公式M=9550P/n来计算。 3.查铭牌也可以找到压缩机的功率。压缩机分活塞压缩机,螺杆压缩机,离心压缩机等。活塞压缩机一般由壳体、电动机、缸体、活塞、控制设备 (启动器和热保护器) 及冷却系统组成。冷却方式有油冷和自然冷却两种。压缩机被看成是制冷系统的心脏,最能表现压缩机特征的专用名词称为“蒸气泵”。压缩机实际所承担的职责是提升压力,将吸气压力状态提到到排气压力状态。

Ⅳ 演绎法预测

演绎法能耗预测主要采用工艺仿真的方式进行,而工艺仿真的技术难点主要是敏感性分析和影响条件的简化。这里,需要强调的是工艺仿真系统的建模和调试不是简单的纠偏,而是要发现影响因素,剖析规律,研究其影响的权重。

一般输油泵机组耗电、加热炉耗油(气)和压缩机组耗能可采用模拟法测算。测算工具包括模拟软件与相关公式,建立步骤如下[10]

第一,数据收集。

管道基础数据:

——管径,壁厚,管道高程、里程(含站场、阀室位置),管道最高承压,摩阻系数;

——沿线土壤四季不同地温、传热半径、土壤导热系数;

——输油站泵机组参数,包括:泵类型、性能曲线、功率、效率、开机/停机时间、额定转速、额定排量、运行方式(串联、并联)等;

——压气站压缩机组参数,包括:压缩机类型(离心式、往复式)、性能曲线、功率、温升比率、效率、开机/停机时间、驱动方式(电驱、燃驱)、最低进口压力、额定转速、压缩机配置方式(几用几备)、运行方式(串联、并联)等;

——加热炉参数,包括加热炉额定负荷、效率等;

——输送介质物性,原油密度、比热容、凝点、黏温曲线,天然气组分及其组成百分比,成品油密度、比热容等。

管线运行数据依据所制订方案而定,参数选取应符合调度手册和交接协议的相关规定。

第二,数据录入。

按照相关测算软件或公式的要求,对收集的数据进行整理、筛选、分析后翔实录入,以保证测算结果的可靠性。

第三,精度调整。

测算软件或公式初步形成后,应利用多组历史运行数据进行反复校核调整,以达到准确测算的要求。

按月度计划输量编制运行方案,并选择相应月份下的沿线地温,在模型中各站进出站主要参数符合调度操作手册要求的前提下,算出一组稳定的工况,得到不同月份内全线各站的耗油/气/电总量;当只有年计划输量的情况下,根据前三年的月不均匀系数编制分月运行方案,并选择相应月份下的沿线地温,在模型中各站进出站主要参数符合调度操作手册要求的前提下,算出一组稳定的工况,得到不同月份内全线各站的耗油/气/电总量。根据测算出的月度数值进行累加,形成全年耗油/气/电总量。

下面以原油管道能耗预测为例,阐述演绎法能耗预测相关要点。

1.原油管道最优能耗预测基本思路

(1)预测对象

直接预测对象:最优月耗电量;最优月耗油(气)量。

间接预测对象:管道月综合能耗(tce或MJ);管道月平均单位周转量耗电量、耗油(气)量;管道月平均单位周转量综合能耗(kgce/104t·km或kJ/104t·km);年耗电量、年耗油(气)量,按直接预测的1~12月的月耗电量、月耗油(气)量累加计算;年综合能耗量,按年耗电量、年耗油(气)量折算;该原油管道年平均单位周转量耗电量、耗油(气)量,按年耗电量、年耗(油)气量除以相应的年度总输油周转量得到;年平均单位周转量综合能耗(kgce/104t·km或kJ/104t·km),按年平均单位周转量耗电量、耗油(气)量折算。

(2)预测范围

时段选择:一般情况下预测目标时段的最终目标为指定月份,如需要,预测过程中要将一个月分解为若干不同稳态工况下的时间段。

能效指标选择:单条原油管道,直接生产能耗和单位周转量生产能耗。

这里需要说明的是,辅助生产能耗、生活能耗、输送损耗可以按相关规范(定)定额计算,并不参与正算法能耗预测计算,只是在最终合计数据时并入能源消耗量和单位周转量综合能耗。

(3)预测的前提条件

基本输入:原油品种、原油输入点进油量、原油输出点交油量。

基础资料:K值、摩阻修正系数、泵效、炉效,设备特性曲线等。

(4)预测算法

工艺计算法(正算法)最优化算法,即在现有条件下,基于对预测月份进行流量分配方案和工艺运行方案优化,得到相对最低(优)能耗、能效的分析逻辑和数学模型。数学模型包括预测的具体方法及配套的数学模型。

模型需考虑定流量运行方案优化、月份流量分配、月份批次计划对能耗的影响、非稳态因素对能耗的影响等部分。建立预测月份流量分配优化及运行方案优化的目标函数。在预测模型中考虑的各种可选前提条件:综合能耗最低、能耗费用最低。预测月份流量分配模式主要有:平均流量、频率分配、最优流量组合、指定流量组合等方式。多种测算模式可以得到多个最优能耗测算值,所构成的区间可以提供更多最优能耗信息。

定流量稳态运行方案优化模式,指定各管段的输油流量:①理想匹配是不考虑节流;②开泵方案优化;③指定开泵方案。

热油管道定流量稳态运行输油温度设定模式:①指定输油温度(出站/进站温度);②自动设定进站温度为允许最低进站温度;③输油温度优化。

基于能耗预测的原油管道分类:①不设加热站的单一品种输送管道;②不设加热站的多品种顺序输送管道;③设加热站的单一品种输送管道;④设加热站的多品种顺序输送管道。

几种原油按一定比例混合,混合原油视为一种单一原油。针对每种类型原油管道分别建立具有较强通用性的最优能耗预测模型。基于每种类型原油管道,分别开发具有较强通用性的最优能耗预测软件。

(5)基本步骤(图7-1)

图7-1

2.能耗测算数学模型

(1)稳态优化能耗测算数学模型

决策变量的选取。全线泵组合和出站油温。

目标函数。管道系统单位时间内运行总能耗(kgce)最低。

S=SF+SE

当管线为不加热输送时,SF为零。

约束条件。①全线泵组合与管路的匹配约束。各泵站提供的有效扬程之和等于全线总摩阻损失与位差之和。②站间管段水力条件约束。③站间管段热力条件约束。④泵站约束。⑤热站约束。

(2)输量分配模型

流量在输油周期内波动相对频繁,事先无法准确预知,同时该因素对热能消耗和电能消耗有较大影响。

重点研究每月周期内,日输量的波动规律。

月任务输量分配方法如下:①平均流量法。月输油任务平均分配到日,定流量稳态优化计算日能耗,日能耗累加得到月总输油能耗,平均流量可能导致泵管匹配状况不佳,平均流量可能导致泵效低,适用于满负荷或流量稳定的管道。②频率分配法。对于不满负荷运行的原油管道,由于各种内外部条件限制,测算月份的管道日输量可能是波动的,难以预先确定测算月份每天的日输量。基于历史数据,统计一个月内,日输量/月输量百分比的分布频率。根据统计频率,确定测算月份的日输量分配。一般不同月份的日输量波动情况有所不同,一般按月统计日输量分布。③最优流量组合法。将月任务输量平均分配到每一天,在其所对应的日输量下运行有可能泵管匹配不好,例如节流比较大或者泵的运行效率比较低,因此该流量对应的能耗值比较大。拟定若干备选的流量,通过优化的方法确定最佳的流量搭配方案。④指定流量组合法。根据管道特点,指定几个流量,确定每个流量的运行时间,在预测具体管道的月输油能耗时,可以根据需要采用不同的输量分配方法,调用不同的输量分配方法将得到不同的能耗指标,将这些能耗指标构成的区间,作为最优能耗区间。

3.能耗测算软件计算逻辑

正算法的技术路线是利用现有仿真技术及管道模型研发“正算法”能耗预测软件(图7-2)。经研究分析,“ 正算法”能耗预测软件开发建议采用基于SPS等仿真技术进行二次开发的技术路线。

图7-2 能耗测算软件计算逻辑图

预测模块应实现根据月度、年度输量计划给定的输量,自动生成开机输送方案,并预测不同方案的能耗,对油气管道能耗进行自动预测;要具备对燃料费、动力费用预测的功能。

预测模块内部应包括“方案自动生成子模块”、“ 能耗指标折算子模块”、“ 逻辑判断子模块”等三个功能子模块。“方案自动生成子模块”、“能耗指标折算子模块”、“逻辑判断子模块”等三个功能子模块应通过通信协议与SPS仿真软件联动,实现自动预测能耗的逻辑过程。开发“方案自动生成子模块”,将压缩机机组、泵机组、加热炉的开机方案,作为此子模块的主要输出信息,按照一定的算法,自动生成若干开机方案。开发“能耗指标折算子模块”,将耗能量及能耗指标作为此子模块的主要输出信息。开发“逻辑判断子模块”,根据SPS仿真软件输出的管输介质输量、压力、温度以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

正算法所实现的能耗预测软件是离线的,即不以实时的SCADA数据作为数据来源进行业务过程的修正。基于“正算法”的能耗预测软件,应以油气管道离线水力、热力仿真计算软件为基础进行开发。能耗预测模块,应实现对天然气管网、成品油管道、原油管道的能耗预测。

4.能耗测算算例

以某管道为例:该管道有5个泵站,每个泵站均只开启1台泵。

第一步:通过用户输入界面,输入管道输送方案,即管道输量及下游各分输站分输量或注入量。

第二步:得到开机方案的全集,暂时不考虑管道水力热力条件,将5个泵站所有的排列组合全部进行罗列,如表7-1所示,假设每站开启1台机,则本例则包括31种开机方式。这31种开机方式中,肯定包括若干个满足用户所输入的分输方案的开机方案,且肯定包括1个或几个相对最优方案。接下来要对这些方案进行筛选。

表7-1 开机方案全集列表

第三步:对全集做初步筛选,筛选出若干个满足用户输入的输送方案的开机方案,筛选方法采用用户根据经验事先设定筛选条件及二分法等多种方法相结合的方式,软件要提供开放的人工设定窗口,如设定液体管道首站必须启泵,则全集方案中所有首站未启泵的方案将被全部排除;或在设定某输量台阶必须至少开启3个站,则全集方案中所有低于3站的方案也被排除;若某管道未经人为设定过,则直接采用二分法进行方案筛选。

假设本例已设定首站必须启泵,则筛选过程如下:

1)按人为设定筛选条件优先的方式,筛选出所有首站未启机的方案,经此步筛选过后,由31种开机组合方式减少为16种组合方式,如表7-2所示:

表7-2 第一次筛选后开机方案列表

2)采用二分法进行筛选,从中间的方案(序号为8的方案)开始计算。如果方案8可以满足输送要求,则排除开机方案1~7,保留开机方案8~16,如表7-3所示:

表7-3 第二次筛选后开机方案列表

3)再次利用二分法进行筛选,在剩余的开机方案中,选择中间的方案(9/2取整,即序号为5的方案)开始计算,如果开机方案5满足输送要求,则排除开机方案6~9,保留开机方案1~5,如表7-4所示:

表7-4 第三次筛选后开机方案列表

4)循环上述计算过程,当开机方案所剩达到足够少时,依次带入SPS仿真系统,进行模拟仿真,计算能耗。

第四步:针对得到的N种可行的开机方案,结合调度手册的控制原则,生成Intran控制脚本文件或其他格式的文件。Intran文件的控制逻辑,应与控制中心的调度操作手册的控制原则相吻合。例如:某台泵的入口压力达到1MPa的时候,才可以开启该台泵。以控制SPS模型进行仿真。

第五步:SPS进行模拟仿真。

第六步:通过能耗指标折算模块,换算各种开机方案下的耗气量、耗电量、耗油量、电单耗、气单耗、油单耗、生产单耗、耗能数量比等能耗指标。

第七步:逻辑判断子模块根据SPS仿真软件输出的管输介质输量、压力、温度以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

第八步:输出N种开机方案的能耗和周转量。

Ⅳ 能耗预测技术

能耗预测技术最重要的就是正算法能耗预测技术的应用。正算法的技术路线是利用现有仿真技术及管道模型研发“正算法”能耗预测软件。经研究分析,“ 正算法”能耗预测软件开发,建议采用基于SPS等仿真技术进行二次开发的技术路线。

预测模块应实现根据月度、年度输量计划给定的输量,自动生成开机输送方案,并预测不同方案的能耗,对油气管道能耗进行自动预测;要具备对燃料费、动力费用预测的功能。预测模块内部应包括“方案自动生成子模块”、“能耗指标折算子模块”、“逻辑判断子模块”等3个功能子模块。“方案自动生成子模块”、“能耗指标折算子模块”、“逻辑判断子模块”等3个功能子模块应通过通信协议与SPS仿真软件联动,实现自动预测能耗的逻辑过程。开发“方案自动生成子模块”,将压缩机机组、泵机组、加热炉的开机方案,作为此子模块的主要输出信息,按照一定的算法,自动生成若干开机方案。开发“能耗指标折算子模块”,将耗能量及能耗指标作为此子模块的主要输出信息。开发“逻辑判断子模块”,根据SPS仿真软件输出的管输介质输量、压力、温度,以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

正算法所实现的能耗预测软件是离线的,即不以实时的SCADA数据作为数据来源进行业务过程的修正。基于“正算法”的能耗预测软件,应以油气管道离线水力、热力仿真计算软件为基础进行开发。能耗预测模块,应实现对天然气管网、成品油管道、原油管道的能耗预测。

正算法预测是基于SPS仿真软件进行二次开发而建立的能耗预测模块。其主要特点:一是运行方案自动生成及初步优选;二是利用SPS对运行方案进行模拟,并将模拟结果转化为能耗数据、燃料费、动力费等。

正算法预测模块的功能结构如图11-3所示:

方案自动生成模块,根据用户输入的管道参数、约束条件,进行方案自动生成并初步优选,形成方案库,为后续进行模拟仿真提供输入基础。

根据管道设备情况,采用列举法,即不考虑管道水力热力条件,将管道所有可能的泵组合、压缩机组合等进行列举,形成开机方案的全集。

图11-3 正算法预测模块结构图

在输量一定的情况下,可以通过计算公式计算出所有开机方案的泵(压缩机)、加热炉功率,得到各方案能够提供的总压头和总功率。

在输量一定的情况下,可以通过计算得到管道所需要消耗的总压头、总能耗的最低值,利用该值对方案全集内的方案进行对比判断,从而获得最接近能耗最低值的方案。

方案模拟仿真模块是通过其中的控制模块读取开机方案模块所生成方案集中的指定方案,包括关键设备的启停状态、流量控制值、温度控制值等,并将其写入SPS模型中对应的点,实现对SPS模拟仿真的控制。

逻辑判断分为两种:即可行性判断,判断方案是否有超压、无法翻越最高点等情况,确定方案可行性;指向性判断,判断方案能耗高低,将指向性结果输出到方案生成模块。

能耗折算模块是正算法预测模块中进行数值转换的重要模块,其将SPS输出结果折算为生产单耗、耗油量、耗气量、总能耗等能耗指标。

如图11-4所示,原油管道方案生成采用如下流程:

1)管道情况描述。采用站场、管道、泵、加热炉、油品5个数据类对这条管道进行表达描述。

2)输入管道输量、分输量、注入量以及管道最低进站温度等必要参数。

3)流量分配,根据输量、分输量及注入量对全线进行流量分配,确定各管段的流量。

4)管段温降计算。采用苏霍夫公式计算管道全线的温度分布情况。

5)管段压降计算。采用达西公式计算各管段在给定输量条件下所需要消耗的压头。

6)通过3、4、5步迭代确定出管道所需消耗的最低能量。

7)根据管道压头损失情况,确定各个泵站所需要开启泵的最低数量;根据管道设计承压能力,确定各个泵站能够开启泵的最大数量。

8)依据各站开泵的最大、最小数量,进行全线的开泵情况组合,形成方案集,并对各方案的能耗进行计算排序。

9)将方案集中的方案与最低能耗进行对比分析,初步确定最优方案。

10)将最优方案写入数据库,SPS控制模块取出数据库中的方案,通过事先对好的点,将开机方案对应的指令写入SPS模型中对应的设备,驱动SPS模型模拟方案所指工况。

11)逻辑判断模块读取SPS计算结果,如果需要调整,则返回方案生成模块进行调整(根据产生总压头与管道所需压头进行比较,确定是高还是低;然后将方案的节流量与剩余压头之和同主泵单泵产生压头进行比较,确定是否具备增加、减少泵的条件)。

图11-4 管道方案生成流程图

12)如果不需要,则输出方案到能耗折算模块。

13)能耗折算模块读取SPS模拟数据,计算出该方案设定时间范围内的总能耗和生产单耗,供使用人员参考。

14)对于任何一次完整的预测过程,系统都将自动将其存入数据库,以备后期查询;可按管道查询历史预测结果,其中包含用户输入的数据和计算的结果和开机方案。

下面再介绍一下天然气管道方案生成数学模型。

首先设定目标函数。

天然气管道系统方案生成模块数学模型以最小能耗为目标,其数学表达式为:

油气管道能效管理

式中:S为生产总能耗,kW;Nj为第j个压缩机站的功率,kW;Nc为管网系统中压缩机站总数。

基本约束条件分为进(分)气量约束和进(分)气压力约束。

进(分)气量约束:运营部门购买的天然气只能在一定气量范围内变化。另外,各用户根据自身需要对购气量也有一定要求。即:

油气管道能效管理

i=1,2,…,Nn

式中:Qi为第i节点进(分)气量,m3/d;Qimin为第i节点允许的最小进(分)气量,m3/d;Qimax为第i节点允许的最大进(分)气量,m3/d。

进(分)气压力约束:天然气运营部门购买的天然气的压力应该限制在一定范围内,同时,用户根据自身需要对管网各分气节点的压力也有一定要求。因此,管道各进(分)气点的压力需满足下式:

油气管道能效管理

i=1,2,…,Nn

式中:Pi为第i节点压力,Pa;Pimin为第i节点允许的最小压力,Pa;Pimax为第i节点允许的最大压力,Pa。

管道强度约束:设天然气管道系统中管道总数为Np,为了保障管道的安全运行,管道k中的天然气压力必须小于此管道的最大允许操作压力,即:

油气管道能效管理

k=1,2,…,Np

式中:Pk为第k管道中天然气的压力,Pa;Pkmax为第k管道允许的最大压力,Pa。

下面介绍管道压力降方程。天然气在管道中流动时会产生压力损失,根据气体在管道中流动的连续性方程和动量方程,得出气体在管道内稳态流动应满足的方程为

油气管道能效管理

式中:M为通过管道的气体流量,kg/s;PQ为管道起点压力,Pa;Pz为管道终点压力,Pa;T为气体流动温度平均值,K;L为管道长度,m;D为管径,m;Δh为管道起始端与终端高程差,m;Z为气体压缩系数,按BWRS状态方程计算;A为气体摩阻系数。

管网节点流量平衡约束。在天然气管道任意一节点处,根据质量守恒定律可知流入和流出该节点的天然气质量应该为0。一般地,对于有N。个节点的天然气管网系统,节点的天然气流量平衡方程组可以写为如下形式:

油气管道能效管理

式中:Ci为与第i个节点相连元件集合;Mik为与第i个节点相连元件k流入(出)i节点流量的绝对值;Qi为i节点与外界交换的流量(流入为正,流出为负);aik为系数,当k元件中流量流入i节点时为+1,当k元件流量流出i节点时为-1。

压缩机功率约束。天然气管网系统中每个压缩机站中压缩机的个数和种类都不尽相同,因此,每个压缩机(站)的功率(由于压缩机的特性原因)被限制在了一定的范围内。

油气管道能效管理

j=1,2,…,Nc

式中:Nj为第j个压缩机(站)的功率,W;Njmin为第j个压缩机(站)允许最小功率,W;Njmax为第j个压缩机(站)允许最大功率,W。

压缩机方程。当气体经过压缩机增压时,应满足方程(11-8)。往复压缩机和离心式压缩机的理论方程如下:

油气管道能效管理

式中:N为压缩机功率,W;ε为压缩机压比,P2/P1;k为压缩机绝热指数;P1为压缩机入口压力,Pa;P2为压缩机出口压力,Pa;V1为压缩机入口处的体积流量,m3/s;ηp为压缩机多变效率,当压缩机为往复式压缩机时,ηp=1。

研究需要优化的运行方案变量,确定出天然气管道系统方案生成数学模型的优化变量为:管道节点处的压力和压缩机(站)的功率。

油气管道能效管理

i=1,2,3,…,Nn;j=1,2,3,…,Nn

式中:Qi为第i节点流量,m3/d;Pi为第i节点压力,Pa;Nj为第j压缩机(站)功率,W。

采用动态规划法对上述模型进行求解,其框图如图11-5所示:

图11-5 方案生成流程

Ⅵ 急~~~ 空气压缩机耗电量怎么计算

首先:1度电=1千瓦时,即1千瓦的电器使用1小时,正好是用了1度电。
假如是500瓦的电器,使用1小时的电量=500/1000x1=0.5度
依次类推。计算公式如下:
①W =UIt(其中W是用电量,U是额定电压,I是额定电流,t是工作时间,适合于任何电路)
②W = P*t(其中W是用电量,P是额定功率,t是工作时间,额定功率在该设备铭牌上有注明) ※注:W单位是焦耳(通用单位是千瓦时,俗称度,计算后要转化,一千瓦时 = 一度 =3.6 乘以 10的6次方焦耳)U的单位是伏特,符号为V,I的单位是安培,符号为A,t 的国际组单位是秒,P的单位是瓦,符号为w,计算时单位一定要一致。
举个例子 首先要看你的排气量 每分钟多大 大概是24立方 ,你算好每分钟的气压再除以24就好了
132KW的空压机其实是24立方/min1立方耗电量好算:132KW,如果按你所说是满载运行,很少空车的话,那就按满载算。132K那就是每小时耗电132千瓦时,每分钟耗电量为132除60分钟=2.2千瓦时;空压机每分钟排量为24立方,那么每立方用电量就是:2.2除24=约0.092千瓦。

Ⅶ 求一个能用的压缩机选型软件,急求!!

不知道你想计算的是哪种压缩机。一般情况下压缩机选型,是针对系列化叶轮计算选型,另一种是单纯计算2元叶轮型式压缩机。当然这两种都是针对离心压缩机的。第一种计算软件,依托数据库,个人电脑基本不可能实现;第二种可以利用Excel表格计算,自己有时间可以编写一个,不过很麻烦。基本上市面上是没有免费的这类软件。而且计算时需要设计者有一定经验,毕竟过程中涉及很多次迭代,如果对最优效率没有概念,则不知道计算结果是否合适。

Ⅷ 天然气压缩机压缩因子

应该是综合参数。进口/出口的温度、压力只能表达瞬间值。比如考虑压缩机出口温度和压力时明显的值要大得多。只能取进口/出口的近似平均值。

Ⅸ 能耗分析评价技术<sup>[]</sup>

油气长输管道能耗统计分析软件,应结合国内管道运营、管理的实际需求,具有管道调控业务急需的各种能耗指标的计算、能耗分析、生成报表、支持查询等基本功能。

根据油气管道现场运行的实际情况,采集不同的能耗数据,其中,油气管道站场主要能耗数据(天然气管道压气站和储气库的燃驱机组耗气量、电驱机组耗电量;原油管道泵站、加热站的泵机组耗电量、加热系统耗油量、耗气量;成品油管道泵站泵机组耗电量等)通过SCADA系统采集到控制中心;而辅助能耗数据(生活和生产辅助系统的耗气、耗油和耗电量,分输站、阀室的耗气、耗电量,以及各级管理机关的耗能量;管道施工及维抢修的放空量、站场日常放空量、站场蒸汽用量、拔头装置耗油量等)仍通过电子报表管理系统以数据填报的方式采集到控制中心。此外,还需要采集管道的基本参数以及工艺运行参数来监控管道的运行以及计算各种能耗指标,例如管道的里程、管径、壁厚、泵(加热炉、压缩机)站的进出站压力和进出站温度、泵(加热炉、压缩机)的进出口压力和进出口温度、管道输量、各站场分输量等。泵站进站压力与泵进口压力的差值可以用来监控站内摩阻随时间的变化情况,而泵出口压力和泵站出站压力的差值可以用来监控泵站节流量的大小。全面地采集真实的能耗数据,可以为管道能耗的分析与评价奠定基础,从而达到控制、降低运营成本的目的。

以上所有基础数据要用数据库进行统一管理,数据库应具备数据组合及添加、删除、更改功能。例如所有已建管道的基础数据都要固化在数据库中,但数据库应具有开放式系统的特点,能够根据管线、站场及机构的变化,随时添加、删除和更改数据。数据库还应该具有有效性检查的功能,根据设定的合理的数据取值范围,剔除明显不合理的数据。能对下级单位上报的报表数据进行初步审核,若经审核发现问题,则以审核未通过的形式回复(此时报表可以取回修改);否则回复通过,此时各级报表不能再取回进行改动。

设计一套能够全面反映能耗水平,并便于进行分析的能耗指标参数体系,以生产单耗、电单耗、气单耗、油单耗、耗气输量比、耗油输量比、耗能输量比构成的基本参数体系为基础。设计、增加更有利于能效分析的新指标,例如更能直观体现能源效率的站场、管道及管网的能源效率、电能利用率、热能利用率、能源转化率等指标。

能够根据SCADA系统自动采集数据和MIS填报的数据自动计算各能耗指标的值。例如计算不同管段管线和输油气站、分公司的周转量,油、电、气、生产综合、企业综合单耗等能耗指标;计算站内主要耗能设备的运行效率;计算站场及管道能源综合利用效率;计算站节流量和节流损失等。

提出一套可操作性强的油气管网能效分析、评价及节能潜力分析方法。应用能效分析方法,可对能耗变化原因、耗能敏感性参数和影响度做定性和定量的分析解释;应用评价方法,可针对具体油气管道,给出定性和部分定量针对能耗水平的客观评价;应用节能潜力分析方法,可针对具体油气管道,指出其节能潜力所在、潜力定量评估和具体挖潜方法。

能耗统计分析系统由系统硬件(统计分析服务器、历史服务器和操作员工作站等)、软件组成。控制中心的能耗数据统计分析系统具备与SCADA系统和MIS系统的通信功能,其中,SCADA系统需设置前置服务器,为能耗数据统计分析系统和在线仿真等其他高级应用系统提供实时数据;MIS系统需设置数据接口,为能耗数据统计分析系统提供辅助能耗数据。能耗统计分析系统构成见图5-1。其中SCADA系统前置服务器和PPS系统数据接口由其他项目考虑,不在本项目范围内。

图表输出功能主要有:

(1)指标纵向对比

能够以设备、站、线、分公司及调度中心为单位进行不同要求的查询,并能进行指标的纵向比较(同比和环比),绘制不同情况下的对比图表。

例如查询某分公司、某管线、某站、某台设备在某时或任意时间段的设备运行时间、各种能源消耗总量、输量、周转量、不同能源实物单耗和综合能耗及效率的历史趋势曲线等。

分别以站、线为单位查询运行参数(进站温度、出站温度、站温升等,进出站压力、节流损失等),并能作出其随时间变化的曲线。

(2)根据需求自动生成报表

能够生成控制中心所需要的各种形式的报表,例如输油管道主要设备的能源消耗统计日报表、周报表、月报表及年度报表;输气管道主要设备能源消耗统计日报表、周报表、月报表及年度报表。

下面简要介绍国内外能效分析软件应用现状(图11-1、图11-2)及发展趋势。目前国内仅有部分油气管道开始尝试利用SPS、ESI等软件的工况模拟功能分析、计算管道能耗。由于仿真起步较晚,模型精度不高,缺少配套分析软件,搭建的仿真系统还远不能达到准确计算、合理分析管道能耗的水平,不足以直观全面地反映复杂管网的能耗水平,不便于开展进一步技术分析与指导节能挖潜工作。

图11-1 加压站能效分析示意图

图11-2 管网能效分析示意图

欧美等发达国家已经成功地实现了管道运行能效分析的系统化与自动化,形成了多种能效分析软件,这些软件不但具有开放的数据接口,可以高效准确地采集历史数据,而且嵌入了专家分析系统,把分析方法、分析经验融入软件,进一步提高了软件的可靠性和实用性。

国际上较大的油气管道公司已经利用先进的分析系统,实现了高效、直观地剖析能源消耗特性,科学分析节能潜力,准确预测能耗变化趋势。管道运行能效分析软件为挖掘节能潜力可提供有力的技术支持。

当前,国际上主流油气管道能效分析商品软件有ESI公司的优化器软件、GREEG公司的Flowdesk软件和Adventica软件。此外,某些油气管道公司自行开发了运行能耗分析软件,如英国煤气公司(British Gas)的OTTO软件。

近年来,国外在油气管道运行能效分析技术方面的发展趋势是,改进软件的自学习功能,朝人工智能方向发展;神经网络、基因型等数理方法的复合化;增加地理信息及其他应用软件的交互接口,提高可视化功能,使软件更具有易操作性;研究水力、热力过渡过程的能效分析技术。

Ⅹ 天然气压缩机如何选型

如果你做设计的,就先学习选型软件;如果你是用户,就找做设计的;如果你还不知道该怎么办,那就找我吧

阅读全文

与天然气压缩机能耗计算分析软件相关的资料

热点内容
四川长虹持股基金 浏览:830
金鹰主题基德邦基金总经理 浏览:666
莫顿外汇金融案真相 浏览:590
西安过桥贷款 浏览:161
33k黄金是什么意思 浏览:603
2011年烟叶收购价格 浏览:655
融资协议书文本 浏览:927
茅台投资现金流 浏览:994
今日基金200006净值 浏览:374
理财长江养老 浏览:881
全国多少人投资理财的 浏览:505
黄金价格怎么算 浏览:193
各大集团旗下的贷款APP 浏览:813
贷款切换 浏览:139
恒拓开源股票 浏览:302
韩元20亿等于多少人民币多少 浏览:405
华夏股票领先 浏览:48
建行房贷转公积金贷款计算器 浏览:307
以下属于外汇的特征 浏览:704
期货长线百分之十的仓位轻仓 浏览:606