导航:首页 > 股市分析 > 因子分析适合的数据类型是

因子分析适合的数据类型是

发布时间:2021-08-27 08:13:07

A. KMO值小于0.5,不适合因子分析应该换什么分析法

当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合作因子分析。这个时候试试从其他角度思考下,比如对数据做些预处理,然后重新计算下;另外一种思路就是,可以试试主成分分析,层次分析法等等均可以

B. 因子分析法需要哪些数据,用什么软件做

因子分析是用因子概括变量信息,所以首先自变量是什么?三年数据当然是一起录入,通过三年的变化来反映因变量的变化。

C. 我想问下,某些数据进行SPSS分析结果得到以下的这图,可以证明那些数据适合做因子分析吗

en 这个KMO和巴球检验是用来检验是否可以进行因子分析,单从这个检验结果来看,是说明可以进行因子分析的

D. 论文用因子分析需要列出哪些数据,三线表需要有哪些

这个表格比较多,包括KMO检验,方差解释率表格,旋转后因子载荷系数值这三个表格一般是需要的,有时候还需要碎石图。网页版本SPSS就是SPSSAU这个里面全部都会有,关键是里面都有智能化文字分析可以直接使用,表格也都是全部整理好的直接下载到EXCEL就能使用。

E. 我想通过因子分析得出来的数据再进行群体差异的比较,应该用什么数据进行单因素方差分析呢

关键是您做哪方面的内容了,确定内容之后,搜集数据或者用问卷调查等方式获得数据,然后才能做相应分析。(南心网 SPSS数据分析)

F. 用spss做因子分析后得出四个因子,然后是用什么数据做相关啊

因子分析将多个指标合并成一个变量,通常有两种做法:

一、计算平均值

针对问卷量表数据,同时几个题表示一个维度。比如想要将“我在工作中能获得成就感”、“我可以在工作中发挥个人的才能”这两题合并成一个维度(影响因素),可以通过SPSSAU的【生成变量】功能计算均值,生成新的变量用于后续分析。

在主成分分析时,勾选成分得分即可。

G. 主成分分析,因子分析是应用于总体数据还是样本数据

主成分分析和因子分析有十大区别
1.原理不同
主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
2.线性表示方向不同
因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。
3.假设条件不同
主成分分析:不需要有假设(assumptions),
因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4.求解方法不同
求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。
(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)
注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况);
求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。
5.主成分和因子的变化不同
主成分分析:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的独特的;
因子分析:因子不是固定的,可以旋转得到不同的因子。
6.因子数量与主成分的数量
主成分分析:主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。
因子分析:因子个数需要分析者指定(SPSS和SAS根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;
7.解释重点不同:
主成分分析:重点在于解释各变量的总方差,
因子分析:则把重点放在解释各变量之间的协方差。
8.算法上的不同:
主成分分析:协方差矩阵的对角元素是变量的方差;
因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)
9.优点不同:
因子分析:对于因子分析,可以使用旋转技术,使得因子更好的得到解释,因此在解释主成分方面因子分析更占优势;其次因子分析不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;
主成分分析:
第一:如果仅仅想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析,不过一般情况下也可以使用因子分析;
第二:通过计算综合主成分函数得分,对客观经济现象进行科学评价;
第三:它在应用上侧重于信息贡献影响力综合评价。
第四:应用范围广,主成分分析不要求数据来自正态分布总体,其技术来源是矩阵运算的技术以及矩阵对角化和矩阵的谱分解技术,因而凡是涉及多维度问题,都可以应用主成分降维;
10.应用场景不同:
主成分分析:
可以用于系统运营状态做出评估,一般是将多个指标综合成一个变量,即将多维问题降维至一维,这样才能方便排序评估;
此外还可以应用于经济效益、经济发展水平、经济发展竞争力、生活水平、生活质量的评价研究上;
主成分还可以用于和回归分析相结合,进行主成分回归分析,甚至可以利用主成分分析进行挑选变量,选择少数变量再进行进一步的研究。
一般情况下主成分用于探索性分析,很少单独使用,用主成分来分析数据,可以让我们对数据有一个大致的了解。

H. 在进行因子分析时,要求所使用的变量必须是什么变量

因子分析从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。

它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。

对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。

因子分析模型描述如下:

⑴X=(x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。

⑵F=(F1,F2,…,Fm)¢(m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F)=I,即向量的各分量是相互独立的。

⑶e=(e1,e2,…,ep)¢与F相互独立,且E(e)=0,e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:

x1=a11F1+a12F2+…+a1mFm+e1

x2=a21F1+a22F2+…+a2mFm+e2

………

xp=ap1F1+ap2F2+…+apmFm+ep

称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。

其矩阵形式为:x=AF+e.

其中:

x=,A=,F=,e=

这里,

⑴m£p;

⑵Cov(F,e)=0,即F和e是不相关的;

⑶D(F)=Im,即F1,F2,…,Fm不相关且方差均为1;

D(e)=,即e1,e2,…,ep不相关,且方差不同。

我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e称为X的特殊因子。

A=(aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。

(8)因子分析适合的数据类型是扩展阅读:

因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。

(i)因子分析常常有以下四个基本步骤:

⑴确认待分析的原变量是否适合作因子分析。

⑵构造因子变量。

⑶利用旋转方法使因子变量更具有可解释性。

⑷计算因子变量得分。

(ii)因子分析的计算过程:

⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。

⑵求标准化数据的相关矩阵;

⑶求相关矩阵的特征值和特征向量;

⑷计算方差贡献率与累积方差贡献率;

⑸确定因子:

设F1,F2,…,Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;

⑹因子旋转:

若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。

⑺用原指标的线性组合来求各因子得分:

采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。

⑻综合得分

以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。

F=(w1F1+w2F2+…+wmFm)/(w1+w2+…+wm)

此处wi为旋转前或旋转后因子的方差贡献率。

⑼得分排序:利用综合得分可以得到得分名次。

网络——因子分析

I. 数据不适合做spss因子分析 ,怎样改数据让它适合因子分析

因子分析是发现变量中潜在的因素。一般而言,有n个变量则最多可以提前n各公因子。现在有变量,最多

阅读全文

与因子分析适合的数据类型是相关的资料

热点内容
2011年烟叶收购价格 浏览:655
融资协议书文本 浏览:927
茅台投资现金流 浏览:994
今日基金200006净值 浏览:374
理财长江养老 浏览:881
全国多少人投资理财的 浏览:505
黄金价格怎么算 浏览:193
各大集团旗下的贷款APP 浏览:813
贷款切换 浏览:139
恒拓开源股票 浏览:302
韩元20亿等于多少人民币多少 浏览:405
华夏股票领先 浏览:48
建行房贷转公积金贷款计算器 浏览:307
以下属于外汇的特征 浏览:704
期货长线百分之十的仓位轻仓 浏览:606
投管投资官网 浏览:909
工行股票市值 浏览:649
期货高开几十个点 浏览:115
无抵押个人网上贷款 浏览:324
期货涨10个点是多少钱 浏览:613