假设用标准差表示的条件波动率在某一期间围绕0.5%和3%之间波动。如果投资者有一个对应与标准普尔500指数的资产组合,那么明天该投资者有多少资本面临损失?假设预测标准差是0.5%,他的损失(99%的概率)将不会超过资产组合价值的1.2%。如果预测标准差是3%,相应的资本损失将高达6.7%。同样,在银行和其他金融机构计算资产组合的市场风险时,在险价值(VaR:ValueatRisk)也至关重要。从1996以来,巴塞尔(Basle)国际协议规定了银行在控制资本充足率时要使用在险价值。ARCH成为金融部门风险评估中不可缺少的工具。
⑵ 期权价格收益率没有ARCH效应 不能用GARCH 建模 那么应该如何求波动率
这需要看你的研究方向,也就是你要求的波动率主要看的影响方向
⑶ 股票数据不连续怎么做arch
我要数据降次这个东西的话,其实非常难,也非常简单,上网上都有
⑷ 度量股票市场的波动性有哪些常见方法
1.首先你要知道股票的数据是时间序列数据。
经研究表明,股票数据是有自相关性的,专所以古典的回属归模型拟合常常是无效的。
2.另外股票数据序列是具有平稳性,或一阶差分、高阶差分平稳性
所以一般来说都会采用平稳性时间序列模型。
简单的如AR(p), MA(q), ARMA(p,q)模型等。
3.但由于这些数据往往还有条件异方差性。进一步的模型修正
有ARCH(p) , GARCH(p,q)等模型。
3中的模型是现今一些研究股票波动的主流手段的基础。
4.如果要研究多支股票波动的联合分布,可以用Copula理论进行建模(这个一般用于VaR,ES风险度量,比较前沿,国内90年代才开始引进,但并不算太难)
5.另外还有一些非实证的手段,那是搞数学的弄的了
⑸ eviews中如何用garch(1,1)计算股票波动率
打开Eviews然后点击Quick然后点击Equation Estimation,然后选择ARCH方法,然后估计就行了
股票波动率:
波动率是指标的资产投资回报率的变化程度,有实际波动率和历史波动率之分。它是江恩理论的一个重要内容,在期货期权市场的指导意义较股票市场更大。下面我们将对波动率的计算及交易策略进行详细讲解,希望对股民有一定的指导意义,赶紧跟着小编一起学习波动率的知识吧!
一、波动率:概述
波动率是指标的资产投资回报率的变化程度,有实际波动率和历史波动率之分。它是江恩理论的一个重要内容,在期货期权市场的指导意义较股票市场更大。
(一)、实际波动率
实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。
(二)、历史波动率
历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。
二、波动率:计算
江恩理论认为,波动率分上升趋势的波动率计算方法和下降趋势的波动率计算方法。
(一)、上升趋势的波动率计算方法是:在上升趋势中,底部与底部的距离除以底部与底部的相隔时间,取整。
上升波动率=(第二个底部-第一个底部)/两底部的时间距离
(二)、下降趋势的波动率计算方法是:在下降趋势中,顶部与顶部的距离除以顶部与顶部的相隔时间,取整。并用它们作为坐标刻度在纸上绘制。
下降波动率=(第二个顶部-第一个顶部)/两顶部的时间距离
三、波动率:交易策略
对于投资者来说,期货市场上除了牛熊市之外,更多的时间处于一种无法辨别价格走势或者价格没有大幅变化的状况。此时的交易策略可以根据市场波动率的大小具体细分。当市场预期波动较小价格变化不大时,可采取卖出跨式组合和卖出宽跨式组合的策略。当预期市场波动较大但对价格上涨和下跌的方向不能确定时,可采取买入跨式组合和买入宽跨式组合的策略。
卖出跨式组合由卖出一手某一执行价格的买权, 同时卖出一手同一执行价格的卖权组成。
采用该策略的动机在于:认为市场走势波动不大,可以卖出期权赚取权利金收益。但是一旦市场价格发生较大波动,那就要面对遭受损失的风险。
“波动率”:波动率是江恩理论的一个重要内容,在期货期权市场的指导意义较股票市场更大。经过上面对波动率计算方法和交易策略的学习,相信投资者对波动率有了一定的了解。此外投资者在运用波动率指标时还需结合均线和波浪理论来综合分析.
⑹ 美股阿齐煤炭的最新股票价格是多少
阿齐煤炭 NYSE:ACI Arch Coal Inc
最新价格1.49美元,近期呈下跌趋势
⑺ 罗伯特·恩格尔提出的ARCH模型有什么样的地位
为了寻求对股票市场价格波动行为更为准确的描述和分析方法,许多金融学家和计量学家尝试用不同的模型与方法处理这一问题。其中,恩格尔于1982年提出的ARCH模型,被认为是最集中反映了方差变化特点而被广泛应用于金融数据时间序列分析的模型。ARCH模型是过去20年内金融计量学发展中最重大的创新。目前所有的波动率模型中,ARCH类模型无论从理论研究的深度还是从实证运用的广泛性来说都是独一无二的。
⑻ 如何用GARCH(1,1)求股票的具体波动率数据
以哈飞股份(600038)为例,运用GARCH(1,1)模型计算股票市场价值的波动率。
GARCH(1,1)模型为:
(1)
(2)
其中, 为回报系数, 为滞后系数, 和 均大于或等于0。
(1)式给出的均值方程是一个带有误差项的外生变量的函数。由于是以前面信息为基础的一期向前预测方差,所以称为条件均值方程。
(2)式给出的方程中: 为常数项, (ARCH项)为用均值方程的残差平方的滞后项, (GARCH项)为上一期的预测方差。此方程又称条件方差方程,说明时间序列条件方差的变化特征。
通过以下六步进行求解:
本文选取哈飞股份2009年全年的股票日收盘价,采用Eviews 6.0的GARCH工具预测股票收益率波动率。具体计算过程如下:
第一步:计算日对数收益率并对样本的日收益率进行基本统计分析,结果如图1和图2。
日收益率采用JP摩根集团的对数收益率概念,计算如下:
其中Si,Si-1分别为第i日和第i-1日股票收盘价。
图1 日收益率的JB统计图
对图1日收益率的JB统计图进行分析可知:
(1)标准正态分布的K值为3,而该股票的收益率曲线表现出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大于正态分布,说明存在着较为明显的“尖峰厚尾”形态;
(2)偏度值与0有一定的差别,序列分布有长的左拖尾,拒绝均值为零的原假设,不属于正态分布的特征;
(3)该股票的收益率的JB统计量大于5%的显著性水平上的临界值5.99,所以可以拒绝其收益分布正态的假设,并初步认定其收益分布呈现“厚尾”特征。
以上分析证明,该股票收益率呈现出非正态的“尖峰厚尾”分布特征,因此利用GARCH模型来对波动率进行拟合具有合理性。
第二步:检验收益序列平稳性
在进行时间序列分析之前,必须先确定其平稳性。从图2日收益序列的路径图来看,有比较明显的大的波动,可以大致判断该序列是一个非平稳时间序列。这还需要严格的统计检验方法来验证,目前流行也是最为普遍应用的检验方法是单位根检验,鉴于ADF有更好的性能,故本文采用ADF方法检验序列的平稳性。
从表1可以看出,检验t统计量的绝对值均大于1%、5%和10%标准下的临界值的绝对值,因此,序列在1%的显著水平下拒绝原假设,不存在单位根,是平稳序列,所以利用GARCH(1,1)模型进行检验是有效的。
图2 日收益序列图
表1ADF单位根检验结果
第三步:检验收益序列相关性
收益序列的自相关函数ACF和偏自相关函数PACF以及Ljung-Box-Pierce Q检验的结果如表3(滞后阶数 =15)。从表4.3可以看出,在大部分时滞上,日收益率序列的自相关函数和偏自相关函数值都很小,均小于0.1,表明收益率序列并不具有自相关性,因此,不需要引入自相关性的描述部分。Ljung-Box-Pierce Q检验的结果也说明日收益率序列不存在明显的序列相关性。
表2自相关检验结果
第四步:建立波动性模型
由于哈飞股份收益率序列为平稳序列,且不存在自相关,根据以上结论,建立如下日收益率方程:
(3)
(4)
第五步:对收益率残差进行ARCH检验
平稳序列的条件方差可能是常数值,此时就不必建立GARCH模型。故在建模前应对收益率的残差序列εt进行ARCH检验,考察其是否存在条件异方差,收益序列残差ARCH检验结果如表3。可以发现,在滞后10阶时,ARCH检验的伴随概率小于显著性水平0.05,拒绝原假设,残差序列存在条件异方差。在条件异方差的理论中,滞后项太多的情况下,适宜采用GARCH(1,1)模型替代ARCH模型,这也说明了使用GARCH(1,1)模型的合理性。
表3日收益率残差ARCH检验结果
第六步:估计GARCH模型参数,并检验
建立GARCH(1,1)模型,并得到参数估计和检验结果如表4。其中,RESID(-1)^2表示GARCH模型中的参数α,GARCH(-1)表示GARCH模型中的参数β,根据约束条件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,满足约束条件。同时模型中的AIC和SC值比较小,可以认为该模型较好地拟合了数据。
表4日收益率波动率的GARCH(1,1)模型的参数估计
⑼ 什么是arch模型和garch模型
1、ARCH模型(Autoregressive conditional heteroskedasticity model)全称“自回归条件异方差模型”,解决了传统的计量经济学对时间序列变量的第二个假设(方差恒定)所引起的问题。
2、GARCH模型称为广义ARCH模型,是ARCH模型的拓展,由Bollerslev(1986)发展起来的。
(1)GARCH模型(波勒斯勒夫(Bollerslev),1986年)。GARCH(p,q)模型为:
(9)股票价格arch扩展阅读:
GARCH的发展:
传统的计量经济学对时间序列变量的第二个假设:假定时间序列变量的波动幅度(方差)是固定的,不符合实际,比如,人们早就发现股票收益的波动幅度是随时间而变化的,并非常数。这使得传统的时间序列分析对实际问题并不有效。
罗伯特·恩格尔在1982年发表在《计量经济学》杂志(Econometrica)的一篇论文中提出了ARCH模型解决了时间序列的波动性(volatility)问题,当时他研究的是英国通货膨胀率的波动性。