㈠ 光催化制氢必须要加入贵金属元素作为一电极来帮助释放氢气吗
大多集中于Ti4+、Zr5+、Nb5+、Ta5+基具有d0电子构型的化合物及In3+、Ga3+、Ge4+、Sn4+基具有d10构型的p区金属化合物。
常见专的光催化剂:属TiO2、ZnO、过渡金属(复合)氧(硫/硒)化物如ZrO2, CdS, Co3O4, WO3, Fe3O4, IrO2, RuO2, γ-Bi2O3等。具有层状钙钛矿结构的复合氧化物如钛酸盐、铌酸盐和钽酸盐等。如:NiO-K4Nb6O17, RuO2-Ba2Ti4O9
㈡ 钌作为光催化剂和镍或者铱作为催化剂的区别
感谢您选用火炬火花塞!火炬火花塞年产量2亿只,国内第一,出口第一。国内行业唯一上市企业,国内行业标准制定者!
火花塞是由绝缘体和金属壳体两部分组成,金属壳体带有螺纹,拧在发动机气缸上,在金属壳体中有一个中心电极,它通过绝缘材料与金属壳体绝缘,在中心电极上端有接线螺母,连接从分电器的过来的高压线,在金属壳体下面还焊有侧电极,在中心电极与侧电极之间有很小的间隙,脉冲高压电击穿两个电极之间的空气,产生电火花点燃可然混合气做功,由于火花塞工作在高温高压的恶劣环境,对它的材料和制造工艺都要求十分高。
大部分火花塞电极用镍合金,也有用贵金属制作火花塞的,比如用银合金、钇金、铂金、铱金……
制成的火花塞分类:镍合金火花塞、银合金火花塞、钇金火花塞、铂金火花塞、铱金火花塞、铱铂金火花塞……
铂金
铂金火花塞最大的特点是寿命长,耐久性好,适合更恶劣的工况。由于铂金火花塞的中心电极较细,根据尖端放电的原理,电极尖更容易集积较多的电能,电火花更容易跳过两极之间的间隙。这表明在冷 机至正常工作转速运转时,有着良好的点火性能。铂金电极还有一个优点,就是铂金属具有较低的电子发射势垒(electron escape barrier),即在同样大小的放电间隙和电极尺寸的条件下,跳过铂金电极间隙所要求的电压较低。汽油机在起动和急加速运转时 ,点火线圈产生的二次电压较低,若采用铂金火花塞,它的铂电极仍能够跳出稳定的火花,保证汽油机起动性、怠速稳定性和急加速性。专家建议使用铂金火花塞的车辆每80000—100000公里更换一次。
铱铂金
铱铂金火花塞拥有出色的点火性能,中心电极采用铱合金、侧电极采用铂金材质。这类火花塞能提高燃油效率以及降低废气排放。专家建议使用铱铂金火花塞的车辆每80000—100000公里更换一次。
铱金
铱金的火花塞由于电弧的强度高,温度高,而且响应速度快,不容易积碳,所以能够把电极做得比普通火花塞小很多。所以用铱金做火花塞具有很大的优势,它的高熔点的性能可以使其使用在各种大功率的发动机上,可以容忍更高的温度而不至于电极融化,烧毁。因为其具有的高硬度,可以使其在火花塞上做的更细。细的电极使点火更为集中,能量更强,火花塞路线更稳固,有效的提升燃烧的效力和效度。
铱金火花塞有如下四大特点:
提升动力:点火能量充足,打火点稳定,提高输出功率,改善动力性能。
平稳状态:燃烧良好,爆发动力强,提高转数,使发动机运转更加平静。
点火迅速:点火电压低,电消炎作用减小,使点火更加迅速。
节省燃油:燃烧情况良好,瞬时输出功率高,可实现较低的油耗又保证同样的输出功率。
专家建议使用铱金火花塞的车辆每80000—100000公里更换一次。
火炬作为目前中国最大的火花塞品牌,品质一流,性价比非常高。火炬火花塞给国内多个汽车,摩托车企业提供配套产品,是国内最大的火花塞企业, 请放心用吧。
火炬火花塞官方旗舰店。
㈢ 在半导体光催化中为什么电子会转移到石墨烯和贵金属
在半导体光催化中为什么电子会转移到石墨烯和贵金属
在于系摩西氧化物复合后,光照反应的时候,半导体光催化剂会生成电子,这电子难道不会将石墨烯氧化物还原为还原氧化石墨西
㈣ 为什么绝大多数光催化剂都要负载贵金属
光催化是材料内电子对/空穴形成,金属能加速电子转移
㈤ 光催化沉积贵金属是什么原理
多相光催化原理
㈥ 光氧催化设备原理是啥
光氧催化设备原理是以Fe2+或Fe3+及H2O2为介质,通过光助-芬顿反应产生羟基自由基使污染物得到降解。紫外光线可以提高氧化反应的效果,是一种有效的催化剂。
紫外/臭氧(UV/03)组合是通过加速臭氧分解速率,提高羟基自由基的生成速度,并促使有机物形成大量活化分子,来提高难降解有机污染物的处理效率。
非均相光催化降解是利用光照射某些具有能带结构的半导体光催化剂如TiO2、ZnO、CdS、WO3、SrTiO3、Fe2O3等,可诱发产生羟基自由基。在水溶液中,水分子在半导体光催化剂的作用下,产生氧化能力极强的羟基自由基,可以氧化分解各种有机物。把这项技术应用于POPs的处理,可以取得良好的效果,但是并不是所有的半导体材料都可以用作这项技术的催化剂,比如CdS是一种高活性的半导体光催化剂,但是它容易发生光阳极腐蚀,在实际处理技术中不太实用。
(6)贵金属光催化原理扩展阅读
利用光催化氧化技术可以高效降解或完全矿化常见的气相有机污染物,而不产生二次污染。袭著革,研究表明,纳米级TiO2复合一种金属氧化物制成光催化剂对NO2、SO2、H2S等酸性气体和NH3、CS2等碱性气体去除效果较好,且这些有害气体可以较为容易地氧化成为NO3-、SO42-等。
J.WTang等用合成的CaBi2O4做催化剂,在可见光下光降解乙醛,实验结果表明,光照2h后,乙醛被完全分解。
发达国家汽车尾气净化器所用的催化剂主要是资源稀少的铂、钌、铑等贵金属,从可持续发展的观点来看,用资源丰富的金属氧化物代替贵金属是发展趋势。
因此,钙钛矿型催化剂和相关氧化物引起了人们的普遍关注,它们除了相对价廉易得外,还因为它们的结构稳定和具有良好的催化性能。薛屏,高玉琢用浸渍法将钙钛矿型复合氧化物成功地载于多孔陶瓷载体上,大幅度提高了它们的光催化氧化汽车尾气的活性。
㈦ 光催化 贵金属过量会有什么影响
简单回答下。
半导体表面和金属接触时,载流子会重新分布,电子会从回费米能级较高的n型半导体答转移到费米能级较低的金属。这一过程直到两者费米能级相等。相等的同时形成肖特基势垒,并捕捉光生电子,防止与光生的空穴复合湮灭。
所以贵金属沉积太多,会带来这几个问题:
材料的稳定性收到影响,很多贵金属(如Au)在激发光的照射下就会发生熔化和产生团聚,这就形成了大晶粒尺寸的粒子,降低材料的比表面积。这是光催化比较禁忌的。
光生载流子的产生依赖于半导体,贵金属覆盖面积太大时,半导体吸收光的效率下降,而且光生空穴也难以迁移到材料表面,影响催化活性。
成本提高。
祝好,以上。
㈧ 什么是光催化材料,麻烦尽快啊!!谢谢
光催化材料是由CeO2(70%-90%) ZrO2(30%-10%)组成,形成ZrO2稳定CeO2的均匀复合物,外观呈浅黄色,具有纳米层状结构,在 1000℃ 经4小时老化后,比表面仍较大(>15M# G),因此高温下也能保持较高的活性。
用途:适用于高温催化材料,如汽车尾气催化剂 技术背景——能源危机和环境问题
人类目前使用的主要能源有石油、天然气和煤炭三种。根据国际能源机构的统计,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年。值得注意的是,中国剩余可开采储蓄仅为1390亿吨标准煤,按照中国2003年的开采速度16.67亿吨/年,仅能维持83年。中国石油资源不足,天然气资源也不够丰富,中国已成为世界第二大石油进口国。因此,开发新能源,特别是用清洁能源替代传统能源,迅速地逐年降低它们的消耗量,保护环境改善城市空气质量早已经成为关乎社会可持续发展的重大课题。中国能源发展方向可以锁定在前景看好的五种清洁能源: 水电、风能、太阳能、氢能和生物质。
太阳能不仅清洁干净,而且供应充足,每天照射到地球上的太阳能是全球每天所需能源的一万倍以上。直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、直接、有效的方法。为此,中国政府制定实施了“中国光明工程”计划。模仿自然界植物的光合作用原理和开发出人工合成技术被称为“21世纪梦”的技术。它的核心就是开发高效的太阳光响应型半导体光催化剂。目前国内外光催剂的研究多数停留在二氧化钛及相关修饰。尽管这些工作卓有成效,但是在规模化利用太阳能方面还远远不够。因此搜寻高效太阳光响应型半导体作为新型光催化剂成为当前此领域最重要的课题。
二, 光催化材料的基本原理
半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。
高效光催化剂必须满足如下几个条件: (1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。 因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。
三, 光催化材料体系的研究概况
从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物
氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区, 研究的比较多的是含Ti,Nb,Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。
硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等
氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系
磷化物:研究很少,如GaP
按照晶体/颗粒形貌分类:
(1)层状结构
**半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐
**层状单元金属氧化物半导体如:V2O5,MoO3,WO3等
**钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构
**含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层 (An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9
**层状钽酸盐:RbLnTa2O7(Ln=La,Pr,Nd,Sm)
(2)通道结构
比较典型的为BaTi4O9,A2Ti6O13(A=K,Na,Li,等)。这类结构往往比层状结构材料具有更为优异的光催化性能。研究认为,其性能主要归咎于金属-氧多面体中的非对称性,产生了偶极距,从而有利于电子和空穴分离
(3)管状结构:在钛酸盐中研究较多
(4)晶须或多晶一维材料
经由VLS,VS,LS(如水热合成,熔盐法)机制可制备一维材料;
液相合成中的软模化学法制备介孔结构的多晶一维材料
对于该种行貌的材料,没有迹象表明,其光催化性能得以提高
(5)其他形状复杂的晶体或粉末颗粒
最典型的是ZnO材料,根据合成方法不同,其行貌也相当丰富
四,提高光催化材料性能的途径
(1)颗粒微细纳米化
降低光生电子-空穴从体内到表面的传输距离,相应的,它们被复合的几率也大大降低。
(2)过度金属掺杂和非金属掺杂
金属:掺杂后形成的杂质能级可以成为光生载流体的捕获阱,延长载流子的寿命。Choi以21种金属离子对TiO2光催化活性的影响,表明Fe3+,Mo5+,Re5+,Ru3+,V4+,Rh3+能够提高光催化活性,其中Fe3+的效果最好。具有闭壳层电子构型的金属离子如Li+,Al3+,Mg2+,Zn2+,Ga2+,Nb5+,Sn4+对催化性影响甚微
非金属:TiO2中N,S,C,P,卤族元素等
对于掺杂,个人的认识,其有如下效应:
**电价效应:不同价离子的掺杂产生离子缺陷,可以成为载流子的捕获阱,延长其寿命;并提高电导能力
**离子尺寸效应:离子尺寸的不同将使晶体结构发生一定的畸变,晶体不对性增加,提高了光生电子-空穴分离效果
**掺杂能级:掺杂元素电负性大小的不同,带隙中形成掺杂能级,可实现价带电子的分级跃迁,光响应红移
(3)半导体复合
利用异种半导体之间的能带结构不同,复合后,如光生电子从A粉末表面输出,而空穴从B表面导出。也即电子和空穴得到有效分离
(4)表面负载
将半导体纳米粒子固定技术在不同的载体上(多孔玻璃、硅石、分子筛等)制备分子或团簇尺寸的光催化剂。
(5)表面光敏
利用具有较高重态的具有可见光吸收的有机物,在可见光激发下,电子从有机物转移到半导体粉末的导带上。该种方法不具有实用性,一方面,有机物的稳定性值得质疑;另一考虑的是经济因素
(6)贵金属沉积
贵金属:Pt, Au, Pd, Rh,
Ni, Cu, Ag,等
(7)外场耦合
热场,电场,磁场,微波场,超声波场
目前,研究较多的是电场效应。其他场的研究也不少见,效果一般,更多的是从工艺层次来说明效果,所谓理论的东西不多 回答
㈨ TiO2薄膜表面沉积贵金属Ag能提高光催化性能的原因
这些内容可以看半抄导体物理,我试着说说,可能会有错误哈。
Ag沉积在TiO2表面就会形成肖特基势垒吗?
答:是的,一沉积之后就会形成肖特基势垒,与材料的费米能级相关,与光照无关。
2. 肖特基势垒是如何有利于载流子迁移的啊?
答:光生电子和光生空穴在迁移过程中,电子向金属转移的过程中会被肖特基势垒所捕获,这样就可以使得光生空穴自由的在材料内移动。
3.肖特基势垒和费米能级有什么关系吗?
答:费米能级不同导致了电子和空穴的迁移。一般金属的功函数是大于半导体的功函数,换言之半导体的费米能级要高于金属的费米能级,使得这两种材料在耦合的过程中,电子由半导体迁移到金属,直到两者费米能级相同时为止。所以接触后的空间电荷层,结果就是金属端负电荷聚集,另一端正电荷聚集,从而形成“schottky”势垒。