导航:首页 > 股票外汇 > 股票偏度

股票偏度

发布时间:2021-03-06 14:47:02

A. 静态分析的概念类别

在计算机科学领域,静态分析指的是一种在不执行程序的情况下对程序行为进行分析的理论、技术。详见程序静态分析。
简介
静态分析法是根据既定的外生变量值求得内生变量的分析方法,是对已发生的经济活动成果,进行综合性的对比分析的一种分析方法。如研究均衡价格时,舍掉时间、地点等因素,并假定影响均衡价格的其他因素,如消费者偏好、收入及相关商品的价格等静止不变,单纯分析该商品的供求达于均衡状态的产量和价格的决定。
简单地说就是抽象了时间因素和具体变动的过程,静止地孤立地考察某些经济现象。它一般用于分析经济现象的均衡状态以及有关经济变量达到均衡状态所需要的条件。 常用的静态分析法有:相对数分析法、平均数分析法、比较分析法、结构分析法、因素替换分析法、综合计算分析法、价值系数分析法等。
指标
静态分析指标有总量指标、相对指标、平均指标、标志变异指标等。 1.总量指标
总量指标又称绝对指标,或简称绝对数,是反映社会经济现象在一定时间、地点、条件下规模或绝对水平的综合指标。
(1)总量指标的种类
①按总量指标反映现象总体内容不同分为:单位总量(指总体单位总数);标志总量(指总体单位某一数量标志值的总和)。
②按总量指标所反映的时间不同分为:时期指标(时期数)和时点指标(时点数),如,总产值、销售量为时期数;年末人口数、设备台数为时点数。
③按计量单位不同分为:实物指标;价值指标;劳动量指标。
(2)总量指标的计算
①直接计量法:要求对总体所有单位进行登记、汇总。
②推算和估算法:推算法有因素关系推算法、比例关系推算法和平衡关系推算法;估算法是运用抽样推断的方法估算总量指标。
2.相对指标
相对指标是两个有联系的统计指标进行对比的比值。也称为相对数。表现形式:①系数和倍数;②成数,无名数;③百分数、千分数、万分数;④复名数,有名数。
①计划完成相对数:指一定时期社会经济现象的实际完成数与计划数之比。其作用是考核、反映计划完成的程度(进度)。计算方法为:计划完成相对数=(实际完成数/计划数)*100%
超额完成(或未完成)绝对数=实际完成数-计划数。
派生公式如下:
A产量、产值增长百分数:计划完成相对数=[(100%+实际增长%)/(100%+计划增长%)]*100%
B产品成本降低百分数:计划完成相对数=[(100%-实际降低%)/(100%-计划规定降低%)]*100%
C计划执行进度相对数的计算方法:计划执行进度=(计划期内某月累计完成数/本期计划数)*100%
D长期计划的检查方法:
第一水平法:将计划末期实际完成数与同期计划规定数之比。计算公式为:计划完成相对数=(计划期末年实达水平/计划期末年应达水平)*100%用于检查计划期内最后一年应达到的水平 如计划期末工业总产值、农业总产值、各种产品的产量等。
第二累计法:计划期内各年累计实际完成数与同期计划规定的累计数之比。计算公式为:计划完成相对数=(计划期内各年累计完成数/同期计划规定的累计数)*100% 用于检查计划期内各年应达到的累计数 如计划期末基本建设投资额、造林面积、新增生产能力等
②结构相对数:指部分占全体的比例,其作用是反映事物的内部构成、性质、质量及其变化。计算公式为:结构相对数=(总体某部分的数值/总体的数值)*100%。特点是,各部分所占比重之和为100%或1。分子与分母位置不能互换。
③比例相对数:指同一总体某一部分数值与另一部分数值对比的比值。其作用是反映总体各部分间的内在联系与比例关系。(同一总体不同部分比较)计算公式为:比例相对数=(总体中某一部分数值/同一总体另一部分数值)。特点是,分子分母同属一个总体,而且分子与分母的位置可以互换。
④比较相对数:指同一时间的同类指标在不同空间对比的比值。其作用是反映同类现象在不同空间的数量差异,发现先进与后进。计算公式为:比较相对数=(某地区某一现象数值/另一地区同一现象数值)*100%。特点是,用百分数或倍数表示,分子和分母可以互换。若以数值小的为母项则计算结果大于100%或1,反之小于100%或1。
⑤强度相对数:指两个性质不同而又相互联系指标之比。其作用是:①反映一国一地的发展水平、力量强弱。②反映事物存在的密度、普遍程度、运动强度、负担强度。③反映经济效益的高低。计算公式为:强度相对数=某一现象数值/另一现象数值。特点是,有正指标和逆指标之分,数值大小与强度成正比为正指标,反之为逆指标。有些指标分子与分母可互换。计量单位常用复名数。
静态分析的正态分布
3.平均指标同质总体某一数量标志在一定时间、地点、条件下所达到的一般水平,是总体的代表值,它描述分布数列的集中趋势。
①平均指标的特点:同质性、代表性、抽象性。
②平均指标的作用:可以比较同类现象在不同单位、不同地区间的平均水平;可以比较同类现象在不同时期的平均水平;可用于研究事物之间的依存关系。
③平均指标种类:分为数值平均数(算术平均数,调和平均数,几何平均数)以及位置平均数(众数,中位数)。
应用
1. 评价投资效益的静态分析法
静态分析流程
(1)投资回收期法 投资回收期法是以企业每年的净收益来补偿全部投资得以回收需要的时间。根据回收期的长短来评价项目的可行性及其效益的高低。计算投资回收期的公式为:Tp=Iv / E
(2) 投资报酬率法
投资报酬率的分析也被广泛应用于评价各种投资方案,其计算公式如下:R=(E-D)/ Iv
2.财务分析:比率分析法
财务分析有三种基本方法:静态分析、趋势分析和同业比较。其中,静态分析是趋势分析和同业比较的基础。财务静态分析是指对一家上市公司一定时期或时点的财务数据和财务指标进行分析。通过静态分析,我们寻找上市公司会计报表存在的问题和风险,或者说,寻找调查分析的重点。
在财务分析中,比率分析用途最广,但也有局限性,突出表现在:比率分析属于静态分析,对于预测未来并非绝对合理可靠。比率分析所使用的数据为帐面价值,难以反映物价水准的影响。
比率分析法,是以同一期财务报表上的若干重要项目间相关数据,互相比较,用一个数据除以另一个数据求出比率,据以分析和评估公司经营活动,以及公司目前和历史状况的一种方法。它是财务分析最基本的工具。
由于公司的经营活动是错综复杂而又相互联系的。因而比率分析所用的比率种类很多,关键是选择有意义的,互相关系的项目数值来进行比较。同时,进行财务分析的除了股票投资者以外,还有其他债券人、公司管理当局、政府管理当局等,由于他们进行财务分析的目的、用途不尽相同,因而着眼点也不同。作为证券投资者,主要是掌握和运用以下2种比率来进行财务分析:
(1)反映公司获利能力的比率。主要有资产报酬率、资本报酬率、股价报酬率、股东权益报酬率、股利报酬率、每股帐面价值、每股盈利、价格盈利比率,普通股的利润率、价格收益率、股利分配率、销售利润率、销售毛利等、营业纯利润率、营业比率、税前利润与销售收入比率等等。
(2)反映公司偿还能力的比率。可划分为两类:
①反映公司短期偿债能力的比率。有流动性比率、速动比率、流动资产构成比率等等;
②反映公司长期偿债能力的比率。有股东权益对负债比率、负债比率、举债经营比率、产权比率、固定比率、固定资产与长期负债比率、利息保障倍数等。
③反映公司扩展经营能力的比率。主要透过再投资率来反映公司内部扩展经营的能力,通过举债经营比率、固定资产对长期负债比率来反映其扩展经营的能力。
④反映公司经营效率的比率,主要有应收帐款周转率、存款周转率、固定资产周转率、资本周转率、总资产周转率等。
3.利率期限结构的静态分析
利率期限结构均值
以中国的利率期限结构为例。要研究国债的利率期限结构,首先得推导出利率期限结构,从国债的市场价格信息中构建出利率和期限的对应关系。鉴于拟合利率曲线的模型和方法很多,加上中国国债市场自身的特殊性,必须选择适当的模型来估算出中国国债的利率期限结构曲线。利率期限结构估计可以利用市场上观察到的债券价格数据来拟合期限结构。最先从国债价格数据估算期限结构的是McCulloch(1971,1975),他首先应用二次、三次多项式样条函数的方法来估计利率期限结构,为数量拟合法开创了先河,并引发了很多学者对其样条方法做一定改进。比较著名的有Vasicek和Fong(1982)的指数样条法和Steeley(1991)的B样条和Chambers等(1984)提出的指数多项式模型、Nelson和Siegel(1987)提出的简约模型、Fama和Bliss(1987)提出的息票剥离法以及Linton等(2001)提出的非参数估计方法。
要求一种方法能构造出连续光滑的收益率曲线,有足够的灵活度产生不同形状的利率曲线,而且能很好地拟合市场的交易价格数据。本文基于中国市场的实际情况,采用了Vasicek和Fong(1982)提出的指数样条法。根据指数样条法,利用中国上交所2002年4月1日至2005年8月31日国债的现货交易收盘价和各上市国债的基本信息,对中国国债利率期限结构进行静态估计,从而得到每天的国债利率期限结构的数据,到期期限从0.5年至20年,每一个到期期限都有相应的即期利率。总共有830个交易日,从而有830天的利率期限结构,这样就可以得到中国国债利率期限结构的时间序列。
选取即期利率曲线的几个关键利率变量做一个描述性分析,以期对中国国债利率期限结构的静态特征有一个初步的认识。选取的关键利率变量有0.5年期、1年期、5年期、10年期、20年期的即期利率,分别代表着短期、中期和长期的即期利率水平。选取即期利率的另外两个重要变量斜度和凸度,在这里斜度定义为S,计算公式为:S=r[,10]-r[,0.5],即0.5年期和10年期即期利率的差异,凸度定义成C,计算公式为:C=r[,6]-0.5*(r[,2]+r[,10]),即凸度等于6年期即期利率减去2年期和10年期即期利率的等额平均值。
首先,对利率期限结构各个期限的即期利率求均值,从右图可以看出,在2002年4月1日到2005年8月31日期间,上交所国债平均利率期限结构曲线呈向上倾斜的状态,和同时期银行存款利率曲线的倾斜方向基本一致。但是,即期利率曲线倾斜的程度并不大,较低期限溢价反映市场对未来提高利率的谨慎预期,即期利率曲线末端逐渐走平,一定程度上反映了国内市场对长期券种的过度投机。图1中均值即期利率的上轴线定义为各个期限即期利率的均值加上其一个标准差,均值即期利率的下轴线定义成各个期限即期利率的均值减去其一个标准差。可以看到,0.5年期即期利率范围大概从1.5%到2.1%,10年期即期利率的范围大概从2.7%到4.6%,20年期即期利率的范围大概从3.5%到4.8%。
更加详细的中国国债即期利率的静态信息可以看表1,列举出关键利率变量的一些基本统计特征,可以看到各个期限的即期利率、斜度和凸度都不服从正态分布。
表1中国国债即期利率的描述性统计特征
即期利率 均值 最大值 最小值 标准差 偏度 峰度
1年 2.04% 2.99% 1.36% 0.41%0.82688 -0.39487 0.0001
5年 3.34% 4.89% 2.03% 0.87%0.44062 -1.27666 0.0001
10年 3.63% 5.42% 2.43% 0.94%0.38265 -1.35330 0.0001
20年 4.21% 5.58% 3.33% 0.66%0.36016 -1.46935 0.0001
斜度 1.81% 3.64% 0.40% 0.81%0.13720 -1.28996 0.0001
凸度 0.45% 1.17%-0.35% 0.28%0.295765 -0.23896 0.0001
4.损益平衡分析法
损益平衡分析是一种短期静态分析,它是在分析期间假设一些变量不变,寻找项目对于某一变量而言在什么点上正好盈亏平衡。
(1)公式推导如下
设产量为Q(额定),销售价格为P ,总固定成本为F ,单位变动成本为q则方案收入R = Q * P;方案成本C = F + q * Q
① 求盈亏平衡时的价格P*
令R = C,得到盈亏平衡时的价格
P* = ( F + Q *q )/ Q
② 求盈亏平衡时产量Q*
令R = C,得到盈亏平衡时产量
Q* = F / (P–q )
③ 求盈亏平衡时生产能力的利用率(BEP)
BEP = Q* / Q
(2)寻找优劣平衡点的基本思想
假设两个方案的总成本受一个共同的变量x的影响,且两个方案的成本均可表示为x的函数,TC1=f1(x),TC2=f2(x).当TC1=TC2,即f1(x)=f2(x),若解出f1(x)=f2(x)时的x值,就得到两个方案的优劣平衡点。

B. 金融数据的尖峰厚尾特征是什么意思

金融数据的尖峰厚尾特征是相比较标准正态分布来说的,标准正态分布的偏度为0,峰度为3,通常做实证分析时,会假设金融数据为正态分布,这样方便建模分析。

但是实证表明,很多数据并不符合正态分布,而更像尖峰厚尾,就是峰度比3大,两边的尾巴比正态分布厚,没有下降得这么快。

厚尾分布主要是出现在金融数据中,例如证券的收益率。 从图形上说,较正态分布图的尾部要厚,峰处要尖。

直观些说,就是这些数据出现极端值的概率要比正态分布数据出现极端值的概率大。因此,不能简单的用正态分布去拟合这些数据的分布,从而做一些统计推断。一般来说,通过实证分析发现,自由度为5或6的t分布拟合的较好。

(2)股票偏度扩展阅读:

基金收益率不服从正态分布,存在显著的尖峰厚尾特性,我国基金市场还不是有效市场。人民币汇率收益率波动有集群性效应,不符合正态分布,有尖峰厚尾的特点。结果表明稳定分布能更好的拟和中国股票收益率的实际分布,稳定分布较好的处理中国股票市场中的“尖峰尾”现象。

但很多资本市场上的现象无法用EMH解释,如证券收益的尖峰厚尾,证券市场的突然崩溃,股价序列的长期记忆性等。对期货价格数据进行统计分析,发现期货价格具有“尖峰厚尾”特性。实证结果表明:我国股价波动具有尖峰厚尾特征、异方差性特征和波动的持续性和非对称特征。

而股票市场的收益率从分布的角度看,并不服从标准的正态分布,而是呈现出一种“尖峰、厚尾”的特征。

C. 怎么用matlab的循环语句来批量计算股票每年的峰度和偏度

怎么用matlab的循环语句来批量计算股票每年的峰度和偏度
shuju=[ ]; % 读入数据
jun_ = mean(shuju) % 求均值
biao_zhun_cha=std(shuju) % 标准差版

pian_=skewness(shuju) % 偏度:>0 称为右偏态,权<0,称为左偏态

feng_=kurtosis(shuju) % 峰度:用作衡量偏离正态分布的尺度之一

D. 服从正态分布的条件

请问你是要定性判断还是定量判断? 一般正态分布判断方法都是用统计软件实现内的。 我这里不是意容思让你很牛的会操作sas和Eviews等这种统计软件,就是它们可以算出数据偏度峰度,同时为零是正态分布定义吧。 不过这种正态分布挺严格的,现实中没人会就看偏度峰度来判断的。 至于那些w检验t检验方差分析非参数检验,网上都有,自己看吧,那些才是主流判断正态分布的工具。 你如果说就看看而不用数据说明问题,那就是胡扯,统计的精髓就是各种检验各种算,买本书自己看看吧。 以上个人见解,如要探讨学术问题可以再问。

E. 《统计学》期末考试试题

北京信息科技大学 《统计学》课程期末考试试卷(A卷)
2007 ~2008学年第一学期
课程所在学院:经济管理学院

一、单项选择题(本大题共15小题,每小题1分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.下列哪个不属于一元回归中的基本假定( D )。
A.对于所有的X,误差项的方差都相同
B.误差项 服从正态分布
C.误差项 相互独立
D.
2.某组数据分布的偏度系数为负时,该数据的众数、中位数、均值的大小关系是( A )。
A.众数>中位数>均值
B.均值>中位数>众数
C.中位数>众数>均值
D.中位数>均值>众数
3.一元回归方程为y=11.64一0.25x,则下列说法中正确的是( C )。
A.自变量平均增长一个单位,因变量减少0.25个单位
B.自变量和因变量之间成正相关关系
C.
D.
4.有甲乙两组数列,则( A )数列平均数的代表性高。
A. 1< 2 1> 2,则乙数列平均数的代表性高
B. 1< 2 1> 2,则乙数列平均数的代表性低
C. 1= 2 1> 2,则甲数列平均数的代表性高
D. 1= 2 1< 2,则甲数列平均数的代表性低
5.某连续变量数列,其末组为开口组,下限为500,相邻组的组中值为480,则末组的组中值为( A )。
A.520 B.510 C.500 D.540
6.不受极端变量值影响的平均数是( D )。
A.算术平均数 B.调和平均数
C.几何平均数 D.众数
7.有20个工人看管机器台数资料如下:2,5,4,4,3,4,3,4,4,2,2,4,3,4,6,3,4,5,2,4,如按以上资料编制频数分布数列应采用( A )。
A.单项式分组 B.等距分组 C.不等距分组 D.以上几种分组均可以
8.若无季节变动,则季节比率应为( B )。
A.0 B. 1 C. 大于1 D. 小于1
9.如果一个定性的变量有m类,则要引进( C )个虚拟变量。
A.m B.m+1
C.m-1 D.无法判断
10.第一组工人的平均工龄为5年,第二组为7年,第三组为10年,第一组工人数占总数的20%,第二组占60%,则三组工人的平均工龄为( B )
A.8年 B.7.2年 C.5年 D.7.8年
11.某企业2007年各种产品的产量比2006年增长了8%,总生产费用增长了12%,则该厂2007年单位成本( D )
A.减少了0.62% B.增加了0.62%
C.减少了3.7% D.增加了3.7%
12.相关系数r与斜率b2的符号( A )。
A.相同 B.不同
C.无法判断
13.已知小姜买的两种股票的综合价格指数上涨了24点,本日股票的平均收盘价格为14元,前日股票的平均收盘价格为( C )
A.10.64 B.10.5
C.11.29 D.无法计算
14.若今年比去年的环比发展速度为112%,去年比前年的环比增长率为3%,那么今年比前年的平均增长率为( D )。
A.9.0% B.7.4%
C.7.5% D.15.4%
15.已知今年增长1%的绝对值为0.54,去年比前年增长的绝对值为5,则去年比前年的增长率为( C )。
A.9.3% B.8.7%
C.10.2% D.无法计算

二、多项选择题(每小题2分,共16分)
在每小题列出的若干选项中有多个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。多选、少选、错选均无分。
1.下列变量,属于离散变量的有( A D E F )。
A.库存产品数量 B.流动资产对流动负债的比率
C.货物总重量 D.按个计量的货物数量
E.一条收费公路上的交通量 F.公司年会的出席人数
2.指出下列数据收集属于通过实验的方法收集数据的有(A B E )
A.培训航空机票代理人的新方法与传统方法的比较结果
B.通过让两组可以比较的孩子分别使用两种不同的组装说明组装玩具来比较这两种组装说明
C.一份产品评价杂志给它的订阅者邮寄调查问卷,请他们为近期购买的产品排名
D.采访一个购物中心的顾客,询问他们为什么在那里购物
E.通过在两个可比较地区分别采用不同的方法,比较两种不同的养老金促销方法
3.下列组限的表示方法哪些是对的( A B D )。
A.按职工人数分组,相邻组的组限可以重叠,也可以间断
B.职工按工资分组,其组限必须重叠
C.学生按成绩分组,其组限必须间断
D.人按身高分组,其组限必须重叠
4.下列属于质量指标指数的有( A B D E )。
A.价格指数 B.单位成本指数
C.销售量指数 D.工资水平指数
E.劳动生产率指数
5.具体地说,如果出现下列( A B C )情况,暗示多元回归模型有可能存在多重共线性。
A.模型中各对自变量之间显著相关
B.线形关系显著,回归系数 的t检验却不显著
C.回归系数的正负号与预期相反
D.
6.算术平均数具有下列哪些性质( B C )。
A. (X- )=最小值 B. (X- )=0
C. (X- )2=最小值 D. (X- )2=0
E. (X- )=1
7.在频数分布数列中( C D E )。
A.总次数一定,频数和频率成反比 B.各组的频数之和等于100
C.各组频率大于0,频率之和等于1 D.频率越小,则该组数值所起作用越小
E.频率表明各组变量值对总体的相对作用程度
8.标准差( C E )。
A.表明总体单位标志值的一般水平 B.反映总体单位的一般水平
C.反映总体单位标志值的离散程度 D.反映总体分布的集中趋势
E.反映总体分布的离中趋势

三、简答题(本大题共2题,每题5分,共10分)
1.什么是年度化增长率?它有何用途?
2.数值型数据的分组方法有哪些?简述组距分组的步骤。
(1)可分为单变量值分组和组距分组两种分组方法。
单变量值分组:将一个变量值作为一组;适合于离散变量;适合于变量值较少的情况(+1)
组距分组:将变量值的一个区间作为一组;适合于连续变量;适合于变量值较多的情况;需要遵循“不重不漏”的原则;可采用等距分组,也可采用不等距分组。(+1)
(2)A.确定组数:

(+1)
B.确定组距:组距(class width)是一个组的上限与下限之差,可根据全部数据的最大值和最小值及所分的组数来确定(+1)
C.统计出各组的频数并整理成频数分布表。(+1)

四、判断题(本大题共5小题,每小题1分,共5分)
1.相关系数为+1时,说明两变量完全相关,相关系数为-1时,说明两个变量不相关。( 错 )
2.如果各种商品价格平均上涨5%,销售量平均下降5%,则销售额指数不变。( 错 )
3.连续型变量和离散型变量在进行组距式分组时,均可采用相邻组组距重叠的方法确定组限。( 对 )
4.根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。( 对 )
5.设P表示单位成本,q表示产量,则∑p1q1—∑p0q1表示由于产品单位成本的变动对总产量的影响。( 错 )

四、计算分析题(共54分)
1.将某邮局中外发邮包样本的重量近似到盎司为:21,18,30,12,14,17,28,10,16,25。计算这组数据的均值,中位数,众数,极差,四分位间距,从偏斜度的角度描述数据的分布形状(10分)。

2.表1中列出了在一个为期三周的商务统计课程中学生课外学习的小时数和他们在课程结束时的测试分数的样本数据如下:
表1 学生课外学习时间及考试分数统计表
学生样本 1 2 3 4 5 6 7 8
学习时间,X 20 16 34 23 27 32 18 22
考试分数,Y 64 61 84 70 88 92 72 77
利用EXCEL进行回归,结果如下表:(共15分)
SUMMARY OUTPUT
回归统计
Multiple R 0.862109
R Square 0.743232
Adjusted R Square 0.700437
标准误差 6.157605
观测值 8
方差分析
df SS MS F Significance F
回归分析 1 658.5034 658.5034 17.36738233 0.005895457
残差 6 227.4966 37.9161
总计 7 886
Coefficients 标准误差 t Stat P-value
Intercept 40.08163265 8.889551 4.50884785 0.004065471
X Variable 1 1.496598639 0.359119 4.16741915 0.005895457

分析并回答下列问题:
(1)学习时间与考试分数之间的相关系数是多少,考试分数的变差中有多少是由于学习时间的变动引起的? 86.21% 74.32%
(2) 根据EXCEL回归输出结果,写出估计的回归方程并解释回归系数的实际意义。
(3) 检验线性关系的显著性 。
(4) 根据标准化残差图判断关于随机误差项正态分布的假定是否成立。
标准化残差分布在-2~2之间,因此关于随机误差项服从正态分布的假定成立
3.随机抽取了15家大型商场销售的同类产品的有关数据(单位:元),利用EXCEL进行回归,结果如下表:(共15分)
SUMMARY OUTPUT
回归统计
Multiple R 0.593684
R Square 0.35246
Adjusted R Square 0.244537
标准误差 69.75121
观测值 15
方差分析
df SS MS F Significance F
回归分析 2 31778.15 15889.08 3.265842 0.073722186
残差 12 58382.78 4865.232
总计 14 90160.93
Coefficients 标准误差 t Stat P-value
Intercept 375.6018288 339.410562 1.10662976 0.290145025
X Variable 1 0.537840951 0.21044674 2.55571054 0.02519961
X Variable 2 1.457193542 0.667706586 2.18238606 0.049681066
相关系数矩阵
Y X1 X2
Y 1
X1 0.308952067 1
X2 0.001214062 -0.8528576 1
注:X Variable 1为购进价格/元
X Variable 2为销售费用/元
因变量Y为销售价格/元
(1)指出Y与X1,Y与X2之间的相关系数,是否有证据表明购进价格、销售价格与销售费用之间存在线性关系? 0.3089 0.0012 没有,因为相关系数较小
(2)根据上诉结果,你认为用购进价格与销售费用来预测是否有用?没用
(3)根据EXCEL回归输出结果,写出估计的回归方程并检验线性关系是否显著( )。不显著
(4)解释判定系数R2,所得结论与问题(2)中是否一致? R2=35.25% , 在销售价价格的总变差中,被估计的回归方程所解释的比例是35.25%,一致。(+3)
(5)X1与X2之间的相关系数是什么?意味着什么?高度相关
(6)模型中是否存在多重共线性?你对模型有何特长建议?可能存在多重共线性;进一步检验是否存在多重共线性,对X1与X2的样本相关系数进行显著性检验(rx1x2=-0.8529),如果是显著,即可确定为存在多重共线性。(+2)
对模型有何特长建议:根据研究目的,删掉相对次要的解释变量。(+1)
4.一公司生产的三种产品的有关如下数据如下表所示 (共14分):
商品 计量单位 销售量 单价(万元)
2005年 2006年 2005年 2006年
甲 公斤 400 480 0.8 0.82
乙 吨 80 88 1.15 1.05
丙 件 50 60 1.20 1.38

(1)计算三种产品的销售额指数;
(2)计算三种产品的销售量指数;
(3)计算三种产品的单位价格指数;
(4)计算分析产量和单位价格的变动对销售额影响的相对数和绝对数。

北京信息科技大学
2007 ~2008学年第一学期
《统计学》课程期末考试试卷标准答案(A卷)
一、 单项选择题(本大题共15小题,每小题1分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.(A) 2.(A) 3.( C) 4.(A) 5.(D)
6.(D) 7(A) 8( B) 9.(C) 10.(B)
11.(D) 12.(A) 13.(C) 14.(D) 15.(C)

二、 多项选择题(每小题2分,共16分)
在每小题列出的五个选项中有二至五个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。多选、少选、错选均无分。
1.(ADEF) 2.(ABE ) 3. (ABD ) 4.(ABDE) 5.(ABC)
6.(BC ) 7.(CDE) 8.(CE)

三、 简答题(本大题共2题,每题5分,共10分)
1. 什么是年度化增长率?它有何用途?
(1)增长率以年来表示时,称为年度化增长率或年率,(+2)
其计算公式为:
m 为一年中的时期个数;n 为所跨的时期总数
季度增长率被年度化时,m =4
月增长率被年度化时,m =12
当m = n 时,上述公式就是年增长率 (+2)
(2)可将月度增长率或季度增长率转换为年度增长率,实现增长率之间的可比性。(+1)

2. 数值型数据的分组方法有哪些?简述组距分组的步骤。
(1)可分为单变量值分组和组距分组两种分组方法。
单变量值分组:将一个变量值作为一组;适合于离散变量;适合于变量值较少的情况(+1)
组距分组:将变量值的一个区间作为一组;适合于连续变量;适合于变量值较多的情况;需要遵循“不重不漏”的原则;可采用等距分组,也可采用不等距分组。(+1)
(2)A.确定组数:

(+1)
B.确定组距:组距(class width)是一个组的上限与下限之差,可根据全部数据的最大值和最小值及所分的组数来确定(+1)
C.统计出各组的频数并整理成频数分布表。(+1)

四、判断题(本大题共5小题,每小题1分,共5分)
1.相关系数为+1时,说明两变量完全相关,相关系数为-1时,说明两个变量不相关。(×)
2.如果各种商品价格平均上涨5%,销售量平均下降5%,则销售额指数不变。(×)
3.连续型变和离散型变量在进行组距式分组时,均可采用相邻组组距重叠的方法确定组限。(√)
4.根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。(√)
5.设P表示单位成本,q表示产量,则∑p1q1—∑p0q1表示由于产品单位成本的变动对总产量的影响。(×)

五、计算分析题(共55分)
中位数的位置:(10+1)/2=5.5
中位数
从偏斜度的角度描述数据的分布形状:均值>中位数,正向(右)偏
(+2)

2.(1)学习时间与考试分数之间的相关系数是多少,考试分数的变差中有多少是由于学习时间的变动引起的?
r=0.862109, (+1)
R2=0.743232, 考试分数的变差中有74.3232%是由于学习时间的变动引起的。(+2)
(2) 根据EXCEL回归输出结果,写出估计的回归方程并解释回归系数的实际意义。
(+3)
回归系数的含义表明学习时间每增加一个小时, 考试分数平均增加1.497分。(+2)
(3) 检验线形关系的显著性
Significance F=0.005895457〈 =5%
线性关系显著。(+3)
(4) 根据标准化残差图判断关于随机误差项服从正态分布的假定是否成立。
标准化残差分布在-2~2之间,因此关于随机误差项服从正态分布的假定成立。(+4)
3. (1)指出Y与X1,Y与X2之间的相关系数,是否有证据表明购进价格、销售价格与销售费用之间存在线性关系
(1)ryxi =0.308952067 ryx2=0.001214062,
没有证据。(+2)
(2)根据上述结果,你认为用购进价格与销售费用来预测是否有用?
没有用。(+2)
(3)根据EXCEL回归输出结果,写出估计的回归方程并检验线性关系是否显著( )。

Significance F=0.073722> =5%
线性关系不显著。(+3)
(4)解释判定系数R2,所得结论与问题(2)中是否一致
R2=35.25% , 在销售价价格的总变差中,被估计的回归方程所解释的比例是35.25%,一致。(+3)
(5)X1与X2之间的相关系数是什么?意味着什么?
rx1x2=-0.8529,高度相关(+2)
(6)模型中是否存在多重共线性?你对模型有何特长建议?
可能存在多重共线性;进一步检验是否存在多重共线性,对X1与X2的样本相关系数进行显著性检验(rx1x2=-0.8529),如果是显著,即可确定为存在多重共线性。(+2)
对模型有何特长建议:根据研究目的,删掉相对次要的解释变量。(+1)

4. (1)三种产品的销售额指数; (+3)
三种产品的销售额指数=∑q1p1/∑q0p0
=568.8/472=120.51%
∑q1p1-∑q0p0==568.8-472=96.8万元
(2)三种产品的销售量指数; (+3)
Iq=∑q1p01/∑q0p0
=557.2/472=118.05%
∑q1p0-∑q0p0
=557.2-472=85.2万元
(3)三种产品的价格指数; (+3)
Ip=∑q1p1/∑q1p0
=568.8/557.2=1.0208=12.08%
∑q1p1-∑q1p0
=568.8-557.2=11.6万元
(4) 分析产量和单位价格的变动对销售额影响的相对数和绝对数。(+5)
120.51%=118.05%*102.08% (+3)
96.8万元万元=85.2万元+11.6万元 (+2)

F. 证明密度函数关于期望对称时,偏度为0

G. 证券组合投资的收益与风险计算

β系数在证券投资中的应用
06级金融班 冷松

β系数常常用在投资组合的各种模型中,比如马柯维茨均值-方差模型、夏普单因素模型(Shape Single-Index Model)和多因素模型。具体来说,β系数是评估一种证券系统性风险的工具,用以量度一种证券或一个投资证券组合相对于总体市场的波动性,β系数利用一元线性回归的方法计算。
(一)基本理论及计算的意义
经典的投资组合理论是在马柯维茨的均值——方差理论和夏普的资本资产定价模型的基础之上发展起来的。在马柯维茨的均值——方差理论当中是用资产收益的概率加权平均值来度量预期收益,用方差来度量预期收益风险的:
E(r)=∑p(ri) ri (1)
σ2=∑P(ri)[ri—E(r)]2 (2)
上述公式中p(ri)表示收益ri的概率,E(r)表示预期收益,σ2表示收益的风险。夏普在此基础上通过一些假设和数学推导得出了资本资产定价模型(CAPM):
E(ri)=rf +βi [E(rM)—rf] (3)
公式中系数βi 表示资产i的所承担的市场风险,βi=cov(r i , r M)/var(r M) (4)
CAPM认为在市场预期收益rM 和无风险收益rf 一定的情况下,资产组合的收益与其所分担的市场风险βi成正比。
CAPM是基于以下假设基础之上的:
(1)资本市场是完全有效的(The Perfect Market);
(2)所有投资者的投资期限是单周期的;
(3)所有投资者都是根据均值——方差理论来选择有效率的投资组合;
(4)投资者对资产的报酬概率分布具有一致的期望。
以上四个假设都是对现实的一种抽象,首先来看假设(3),它意味着所有的资产的报酬都服从正态分布,因而也是对称分布的;投资者只对报酬的均值(Mean)和方差(Variance)感兴趣,因而对报酬的偏度(Skewness)不在乎。然而这样的假定是和实际不相符的!事实上,资产的报酬并不是严格的对称分布,而且风险厌恶型的投资者往往具有对正偏度的偏好。正是因为这些与现实不符的假设,资本资产定价模型自1964年提出以来,就一直处于争议之中,最为核心的问题是:β系数是否真实正确地反映了资产的风险?
如果投资组合的报酬不是对称分布,而且投资者具有对偏度的偏好,那么仅仅是用方差来度量风险是不够的,在这种情况下β系数就不能公允的反映资产的风险,从而用CAPM模型来对资产定价是不够理想的,有必要对其进行修正。
β系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对β系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况。
β系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的"股性",可根据市场走势预测选择不同的β系数的证券从而获得额外收益,特别适合作波段操作使用。当有很大把握预测到一个大牛市或大盘某个不涨阶段的到来时,应该选择那些高β系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低β系数的证券。为避免非系统风险,可以在相应的市场走势下选择那些相同或相近β系数的证券进行投资组合。比如:一支个股β系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股β系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。β系数为1,即说明证券的价格与市场一同变动。β系数高于1即证券价格比总体市场更波动。β系数低于1即证券价格的波动性比市场为低。
(二)数据的选取说明
(1)时间段的确定
一般来说对β系数的测定和检验应当选取较长历史时间内的数据,这样才具有可靠性。但我国股市17年来,也不是所有的数据均可用于分析,因为CAPM的前提要求市场是一个有效市场:要求股票的价格应在时间上线性无关,而2006年之前的数据中,股份的相关性较大,会直接影响到检验的精确性。因此,本文中,选取2005年4月到2006年12月作为研究的时间段。从股市的实际来看,2005年4月开始我国股市摆脱了长期下跌的趋势,开始进入可操作区间,吸引了众多投资者参与其中,而且人民币也开始处于上升趋势。另外,2006年股权分置改革也在进行中,很多上市公司已经完成了股改。所以选取这个时间用于研究的理由是充分的。
(2)市场指数的选择
目前在上海股市中有上证指数,A股指数,B股指数及各分类指数,本文选择上证综合指数作为市场组合指数,并用上证综合指数的收益率代表市场组合。上证综合指数是一种价值加权指数,符合CAPM市场组合构造的要求。
(3)股票数据的选取
这里用上海证券交易所(SSE)截止到2006年12月上市的4家A股股票的每月收盘价等数据用于研究。这里遇到的一个问题是个别股票在个别交易日内停牌,为了处理的方便,本文中将这些天该股票的当月收盘价与前一天的收盘价相同。
(4)无风险收益(rf)
在国外的研究中,一般以3个月的短期国债利率作为无风险利率,但是我国目前国债大多数为长期品种,因此无法用国债利率作为无风险利率,所以无风险收益率(rf)以1年期银行定期存款利率来进行计算。
(三)系数的计算过程和结果
首先打开“大智慧新一代”股票分析软件,得到相应的季度K线图,并分别查询鲁西化工(000830),首钢股份(000959),宏业股份(600128)和吉林敖东(000623)的收盘价。打开Excel软件,将股票收盘价数据粘贴到Excel中,根据公式:月收益率=[(本月收盘价-上月收盘价)/上月收盘价]×100%,就可以计算出股票的月收益率,用同样的方法可以计算出大盘收益率。将股票收益率和市场收益率放在同一张Excel中,这样在Excel表格中我们得到两列数据:一列为个股收益率,另一列为大盘收益率。选中某一个空白的单元格,用Excel的“函数”-“统计”-“Slope()函数”功能,计算出四支股票的β系数。

下面列示数据说明:
鲁西化工000830 首钢股份000959 弘业股份600128 吉林敖东000623 上证 市场收益率 市场超额收益率 市场无风险收益率
统计时间 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 指数
收益率 收益率 收益率 收益率
05年4月 4.51 基期 3.77 基期 3.29 基期 4.69 基期 1159.14
05年5月 3.81 -6.23% -8.65% 3.68 7.54% 5.12% 3.48 4.53% 2.11% 7.02 -7.77% -10.19% 1060.73 -2.56% -4.98% 2.42%
05年6月 3.98 8.33% 5.91% 3.35 -18.39% -20.81% 3.3 4.39% 1.97% 8.49 15.07% 12.65% 1080.93 8.03% 5.61% 2.42%
05年7月 4.76 -9.07% -11.49% 3.12 -13.10% -15.52% 3.02 -30.67% -33.09% 9.96 -11.30% -13.72% 1083.03 -8.72% -11.14% 2.42%
05年8月 3.33 -19.28% -21.70% 3.57 -12.97% -15.39% 4.11 -16.93% -19.35% 8.17 -0.87% -3.29% 1162.79 -14.16% -16.58% 2.42%
05年9月 3.45 -2.71% -5.03% 3.35 8.19% 5.87% 3.73 13.08% 10.76% 9.86 36.64% 34.32% 1155.61 11.26% 8.94% 2.32%
05年10月 3.32 -7.62% -9.94% 3.15 -10.33% -12.65% 3.51 4.66% 2.34% 8.17 27.03% 24.71% 1092.81 -1.63% -3.95% 2.32%
05年11月 3.46 -15.45% -17.77% 2.41 -9.21% -11.53% 3.38 -18.34% -20.66% 9.86 -1.68% -4.00% 1099.26 -8.00% -10.32% 2.32%
05年12月 3.48 3.41% 1.09% 2.46 -8.88% -11.20% 3.39 10.49% 8.17% 16.55 17.79% 15.47% 1161.05 9.50% 7.18% 2.32%
06年1月 3.6 45.66% 43.14% 2.75 23.67% 21.15% 3.86 3.13% 0.61% 19.25 8.28% 5.76% 1258.04 16.34% 13.82% 2.52%
06年2月 4.67 -57.66% -60.18% 2.79 -12.57% -15.09% 3.75 -19.06% -21.58% 21.73 -42.86% -45.38% 1299.03 -19.66% -22.18% 2.52%
06年3月 4.57 9.47% 6.95% 3.05 0.43% -2.09% 2.95 -3.41% -5.93% 24.51 -8.22% -10.74% 1298.29 -0.18% -2.70% 2.52%
06年4月 2.65 -5.54% -8.06% 2.96 -7.26% -9.78% 3.28 -17.55% -20.07% 50.00 -39.26% -41.78% 1440.22 -9.32% -11.84% 2.52%
06年5月 3.22 -0.23% -3.60% 2.8 -13.13% -16.50% 3.81 -1.14% -4.51% 65.34 -9.05% -12.42% 1641.3 -6.73% -10.10% 3.37%
06年6月 3.37 -21.41% -24.78% 2.84 -5.57% -8.94% 3.69 10.55% 7.18% 49.75 -0.46% -3.83% 1672.21 -8.49% -11.86% 3.37%
06年7月 3.48 21.26% 17.89% 2.91 4.21% 0.84% 4.48 8.50% 5.13% 62.3 20.00% 16.63% 1612.73 6.91% 3.54% 3.37%
06年8月 3.37 3.70% 0.33% 2.97 -8.36% -11.73% 4.78 17.47% 14.10% 74.1 -35.85% -39.22% 1658.63 0.47% -2.90% 3.37%
06年9月 3.27 14.29% 11.15% 3.13 -17.94% -21.08% 4.73 11.38% 8.24% 7.01 5.44% 2.30% 1752.42 11.82% 8.68% 3.14%
06年10月 3.17 67.50% 64.36% 3.41 10.75% 7.61% 4.39 -18.97% -22.11% 91.28 67.91% 64.77% 1837.99 28.80% 25.66% 3.14%
06年11月 3.12 -32.71% -35.85% 4.35 -4.21% -7.35% 4.2 58.86% 55.72% 60.02 -11.09% -14.23% 2099.29 4.80% 1.66% 3.14%
06年12月 3.16 24.21% 21.07% 5.01 22.30% 19.16% 4.43 52.43% 49.29% 68.28 56.81% 53.67% 2675.47 52.67% 49.53% 3.14%
鲁西化工(000830)的β系数=0.89
首钢股份(000959)的β系数=1.01
弘业股份(600128)的β系数=0.78
吉林敖东(000623)的β系数=1.59
(三)结论
计算出来的β值表示证券的收益随市场收益率变动而变动的程度,从而说明它的风险度,证券的β值越大,它的系统风险越大。β值大于0时,证券的收益率变化与市场同向,即以极大可能性,证券的收益率与市场同涨同跌。当β值小于0时,证券收益率变化与市场反向,即以极大可能性,在市场指数上涨时,该证券反而下跌;而在市场指数下跌时,反而上涨。(在实际市场中反向运动的证券并不多见)
根据上面对四只股票β值的计算分析说明:首钢股份和吉林敖东的投资风险大于市场全部股票的平均风险;而鲁西化工和宏业股份的投资风险小于市场全部股票的平均风险。那我们在具体的股票投资过程中就可以利用不同股票不同的β值进行投资的决策,一般来说,在牛市行情中或者短线交易中我们应该买入β系数较大的股票,而在震荡市场中或中长线投资中我们可以选取β值较小的股票进行风险的防御。

H. 怎样用SAS对股市数据进行单变量描述统

SAS需要变成 你把数据整理好 用proc means过程对数据集进行统计分析,可以得到版非缺失权值数、缺失值数、权重和、均值、总和、最小值、最大值、全距、未校正平方和、校正平方和、方差、标准差、标准误、变异系数、偏度、t值、大于t值概率,共17个统计量

I. 如何用GARCH(1,1)求股票的具体波动率数据

以哈飞股份(600038)为例,运用GARCH(1,1)模型计算股票市场价值的波动率。

GARCH(1,1)模型为:

(1)

(2)

其中, 为回报系数, 为滞后系数, 和 均大于或等于0。

(1)式给出的均值方程是一个带有误差项的外生变量的函数。由于是以前面信息为基础的一期向前预测方差,所以称为条件均值方程。

(2)式给出的方程中: 为常数项, (ARCH项)为用均值方程的残差平方的滞后项, (GARCH项)为上一期的预测方差。此方程又称条件方差方程,说明时间序列条件方差的变化特征。

通过以下六步进行求解:

本文选取哈飞股份2009年全年的股票日收盘价,采用Eviews 6.0的GARCH工具预测股票收益率波动率。具体计算过程如下:

第一步:计算日对数收益率并对样本的日收益率进行基本统计分析,结果如图1和图2。

日收益率采用JP摩根集团的对数收益率概念,计算如下:

其中Si,Si-1分别为第i日和第i-1日股票收盘价。

图1 日收益率的JB统计图

对图1日收益率的JB统计图进行分析可知:

(1)标准正态分布的K值为3,而该股票的收益率曲线表现出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大于正态分布,说明存在着较为明显的“尖峰厚尾”形态;

(2)偏度值与0有一定的差别,序列分布有长的左拖尾,拒绝均值为零的原假设,不属于正态分布的特征;

(3)该股票的收益率的JB统计量大于5%的显著性水平上的临界值5.99,所以可以拒绝其收益分布正态的假设,并初步认定其收益分布呈现“厚尾”特征。

以上分析证明,该股票收益率呈现出非正态的“尖峰厚尾”分布特征,因此利用GARCH模型来对波动率进行拟合具有合理性。

第二步:检验收益序列平稳性

在进行时间序列分析之前,必须先确定其平稳性。从图2日收益序列的路径图来看,有比较明显的大的波动,可以大致判断该序列是一个非平稳时间序列。这还需要严格的统计检验方法来验证,目前流行也是最为普遍应用的检验方法是单位根检验,鉴于ADF有更好的性能,故本文采用ADF方法检验序列的平稳性。

从表1可以看出,检验t统计量的绝对值均大于1%、5%和10%标准下的临界值的绝对值,因此,序列在1%的显著水平下拒绝原假设,不存在单位根,是平稳序列,所以利用GARCH(1,1)模型进行检验是有效的。

图2 日收益序列图

表1ADF单位根检验结果

第三步:检验收益序列相关性

收益序列的自相关函数ACF和偏自相关函数PACF以及Ljung-Box-Pierce Q检验的结果如表3(滞后阶数 =15)。从表4.3可以看出,在大部分时滞上,日收益率序列的自相关函数和偏自相关函数值都很小,均小于0.1,表明收益率序列并不具有自相关性,因此,不需要引入自相关性的描述部分。Ljung-Box-Pierce Q检验的结果也说明日收益率序列不存在明显的序列相关性。

表2自相关检验结果

第四步:建立波动性模型

由于哈飞股份收益率序列为平稳序列,且不存在自相关,根据以上结论,建立如下日收益率方程:

(3)

(4)

第五步:对收益率残差进行ARCH检验

平稳序列的条件方差可能是常数值,此时就不必建立GARCH模型。故在建模前应对收益率的残差序列εt进行ARCH检验,考察其是否存在条件异方差,收益序列残差ARCH检验结果如表3。可以发现,在滞后10阶时,ARCH检验的伴随概率小于显著性水平0.05,拒绝原假设,残差序列存在条件异方差。在条件异方差的理论中,滞后项太多的情况下,适宜采用GARCH(1,1)模型替代ARCH模型,这也说明了使用GARCH(1,1)模型的合理性。

表3日收益率残差ARCH检验结果

第六步:估计GARCH模型参数,并检验

建立GARCH(1,1)模型,并得到参数估计和检验结果如表4。其中,RESID(-1)^2表示GARCH模型中的参数α,GARCH(-1)表示GARCH模型中的参数β,根据约束条件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,满足约束条件。同时模型中的AIC和SC值比较小,可以认为该模型较好地拟合了数据。

表4日收益率波动率的GARCH(1,1)模型的参数估计

阅读全文

与股票偏度相关的资料

热点内容
比特币与白银价格 浏览:825
理财季季富 浏览:367
投资利息怎么算 浏览:168
贵金属行业认识 浏览:499
融资到余额0 浏览:283
河北银行查贷款用途吗 浏览:124
外汇储备是外债 浏览:119
股票估值的基本公式 浏览:883
华夏基金广州分公司副总裁 浏览:122
购买的基金怎样提现 浏览:601
按揭贷款有上限吗 浏览:750
glg外汇词汇 浏览:102
临沂中国银行商业贷款转公积金贷款计算器 浏览:887
网易贵金属app客户端 浏览:276
融资分析是什么 浏览:253
芜湖企业贷款卡 浏览:381
农村贷款建房子怎么办 浏览:993
中江信托总部 浏览:341
800台币等多少人民币 浏览:935
融资合作协议范本 浏览:832