❶ 基于led的可见光通信
这个问题!!!
一般不说光频率吧?而是说光波长吧?虽然是一一对应的。
既然是可见光通信,那光谱自然是可见光范围内了,但是LED颜色也很多,波长自然是你想选啥就选啥吧?不过呢,一般光通信用偏红色区域的光,也就是620-760纳米的光更普遍。
❷ 可见光通信为什么选用LED
led节能且能快速关断
❸ 基于大功率白光LED的可见光通信设计
光通信跟电波通信原理上是一样的,无非就是调制解调。大功率LED难点应该是在led的驱动上面,开关速度和功率。还有接收信号的器件灵敏度等
❹ 可见光通信技术的我国可见光通信研究
经工业和信息化部测试认证,我国“可见光通信系统关键技术研究”近日获得重大突破,实时通信速率提高至50Gbps(比特每秒),相当于0.2秒即可完成一部高清电影的下载。
可见光通信是利用半导体照明(LED灯)的光线实现“有光照就能上网”的新型高速数据传输技术。可见光通信技术绿色低碳、可实现近乎零耗能通信,还可有效避免无线电通信电磁信号泄露等弱点,快速构建抗干扰、抗截获的安全信息空间。
我国信息领域著名专家、中国工程院院士邬江兴介绍说,目前,全球大约拥有440亿盏灯具构成的照明网络,数百亿的LED照明设备与其它设备融合将构筑一个巨大的可见光通信网。可以设想,未来实现大规模可见光通信后,每盏灯都可以当做一个高速网络热点,人们等车的时候在路灯下就可下载几部电影,在飞机、高铁上也可借助LED光源无线高速上网,满足室内网、物联网、车联网、工业4.0、安全支付、智慧城市、国防通信、武器装备、电磁敏感区域等网络末端无线通信需求,为互联网+提供一种崭新的廉价接入方法。
邬江兴预测,在未来数十年内,信息的传输量将超出现有无线电频谱的承载能力,可见光通信技术可有效突破无线电频谱资源严重匮乏的困局,是具有广阔应用前景的下一代无线通信技术之一,可形成万亿级年产值的战略性新兴产业。
高速传输一直是可见光通信领域研究的焦点课题之一,解放军信息工程大学于宏毅研发团队采用光学和电学相协同的处理方法,突破了可见光空间通道互干扰高效抑制等关键技术,进入集成化、微型化设计与实现阶段。这所大学是国内较早从事可见光通信技术研发的科研单位,2013年牵头承担了我国首个可见光863计划项目,并组建了“中国可见光通信产业技术联盟”。经过3年多的科技攻关,先后研发成功“可见光点播电视业务”“可见光新型无线广播”“可见光精确定位”等应用示范系统。
LED无线通信的研究在日本首先开展
将LED照明灯组成可见光无线通信系统的研究工作,在日本首先开展,并得到日本政府的重视。在2006-11-28发布的科技日报报道:“日本总务省计划与NTT研究所及NEC公司等联手,共同开发一种利用照明灯光传输高速信息的“可见光通信”系统。日本政府将把这一技术作为下一代宽带网普及,预计在5年内实用化“。
室内白光LED无线通信的研究在日本首先开展。日本大学的日本KEIO大学的Tanaka等人和SONY计算机科学研究所的Haruyama在2000年提出了利用LED照明灯作为通信基站进行信息无线传输的室内通信系统[4]。他们以Gfeller和Bapst的室内光传输信道为传输模型,将信道分为直接信道和反射信道两部分,并认为LED光源满足朗伯(Lambertian)照射形式,且以强度调制直接检测(IM-DD)为光调制形式进行了建模仿真,获得了数据率、误码率以及接收功率等之间的关系。认为当传送数据率在10Mbps以下的系统是可行的,码间干扰(InterSymbol Interference, ISI)和多径效应是影响系统性能的两大因素。2001年,Tanaka等人在原来的基础上分别采用OOK_RZ调制方式与OFDM调制方式对系统进行了仿真[6],结果表明::当传送数据率在100Mbps以下时这两种调制技术都是可行的,当数据率大于100Mbps时,OFDM调制技术优于OOK_RZ调制技术。
Tanaka和Komine等人的具体分析
2002年, Tanaka和Komine等人对LED可见光无线通信系统展开了具体分析[7],包括光源属性信道模型、噪声模型、室内不同位置的信噪比分布等,求出了系统所需的LED单元灯的基本功率要求,并分别以OOK_RZ、OOK_NRZ、m-PPM调制方式进行仿真分析,得到了不同条件下的误码率大小。同年Komine等研究了由墙壁反射引起的多径效应对可见光无线系统造成的影响,分别以OOK、2-PPM、4-PPM、8-PPM调制方式进行仿真,结果表明:在数据率小于60Mbps,接收视场角小于50度的条件下,采用8-PPM调制方式可有效克服墙壁反射引起的多径效应。以后, Komine等继续对LED单元灯的设计布局、可见光传播信道(分直达信道和反射信道两部分)、室内人员走动导致的反射阴影、墙壁反射光,码间干扰对系统性能的影响等展开研究[8],并得出了不同接收视场角和不同数据传送率下各因素对系统性能的影响曲线。同年,Komine等提出了一套结合电力线载波通信和LED可见光通信的数据传输系统[9]。2005年, Komine等利用基于最小均方误差算法的自适应均衡技术来克服码间干扰(ISI) [10]。仿真表明在数据率为400Mbps以下时,FIR均衡器和DFE均衡器都可有效减少ISI的影响,当数据率高于400Mbps时,DFE均衡器更能有效克服ISI。
应用前景非常看好
国内在这方面的研究刚刚起步,暨南大学光电工程系的陈长缨教授对LED发光特性、室内通信链路和信道模型进行了初步的研究 [11]。
总之,LED照明光无线通信在国外也还出在起步和摸索阶段,但其应用前景非常看好,不仅可以用于室内无线接入,还可以为城市车辆的移动导航及定位提供一种全新的方法。汽车照明灯基本都采用LED灯,可以组成汽车与交通控制中心、交通信号灯至汽车、汽车至汽车的通信链路。这也是LED可见光无线通信在智能交通系统的发展方向。
❺ 目前LED灯的显色性,显色指数。是多少~ 与白炽灯,普通节能灯做下比较。 3个的参数都要哦。
白炽灯
白炽灯又叫做电灯泡,它的工作原理是电流通过灯丝(钨丝,熔点达3000多摄氏度)时产生热量,螺旋状的灯丝不断将热量聚集,使得灯丝的温度达2000摄氏度以上,灯丝在处于白炽状态时,就象烧红了的铁能发光一样而发出光来。灯丝的温度越高,发出的光就越亮。故称之为白炽灯。白炽灯发光时,大量的电能将转化为热能,只有极少一部分(可能不到1%,没计算过)可以转化为有用的光能。
白炽灯发出的光是全色光,但各种色光的成份比例是由发光物质(钨)以及温度决定的。比例不平衡就导致了光的颜色的偏色,所以在白炽灯下物体的颜色不够真实。
白炽灯的寿命跟灯丝的温度有关,因为温度越高,灯丝就越容易升华。日光灯两端发黑过程是:钨丝的升华直接变成钨气,这些钨气体遇到温度较低的灯管壁又凝华在灯管壁上而发黑的,
当钨丝升华到比较细瘦时,通电后就很容易烧断,从而结束了灯的寿命。所以白炽灯的功率越大。
荧光灯
荧光灯又叫做日光灯,它的工作原理:日光灯管简单的说是个密闭的气体放电管。管内主要气体为氩(argon)气(另包含氖neon或氪krypton)气压约大气的0.3%。另外包含几滴水银——形成微量的水银蒸汽。水银原子约占所有气体原子的千分之一的比例。
日光灯管是靠着灯管的汞原子,由气体放电的过程释放出紫外光(主要波长为2537埃=2537×10-10m)。所消耗的电能约60%可以转换为紫外光。其他的能量则转换为热能。
日光灯由灯管内表面的荧光物质吸收紫外光后释放出可见光。不同的荧光物质 会发出不同的可见光。一般紫外光转换为可见光的效率约为40%。因此日光灯的效率约为60%×40%=24%——大约为相同功率钨丝电灯的两倍。
节能灯
节能灯又叫紧凑型荧光灯(国外简称CFL灯)具有光效高(是普通灯泡的5倍),节能效果明显,寿命长(是普通灯泡的8倍),体积小,使用方便等优点。它的工作原理和日光灯基本相同。
节能灯除了白色(冷光)的外,现在还有***(暖光)的。一般来说在同一瓦数之下,一盏节能灯比白炽灯节能80%,平均寿命延长8倍,热辐射仅20%。非严格的情况下,一盏5瓦的节能灯光照可视为等于25瓦的白炽灯,7瓦的节能灯光照约等于40瓦的,9瓦的约等于60瓦的。
LED灯
LED灯(Light Emitting Diode)又叫发光二极管,它是一种固态的半导体器件,可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由三部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子,中间通常是1至5个周期的量子阱。当电流通过导线作用于这个晶片的时候,电子和空穴就会被推向量子阱,在量子阱内电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。
LED灯具有体积小、耗电低、寿命长、无毒环保等诸多优点,LED灯具从室外装饰,工程照明,逐渐发展到家用照明。
❻ LED可见光通信,有会做的吗
你想做什么,直接说好了😁
❼ led交通信号灯环保节能指标是什么
LED交通信号灯的特点
1、可见度佳:
LED交通信号灯在持续光照、雨淋、灰尘等恶劣的气候条件下,仍能保持较好的可见度及性能指标。LED发出的光是单色光,因而不需要用色片来产生红、黄、绿的信号颜色;LED发出的光具有方向性,并有一定的发散角,由此可以摒弃传统信号灯中使用的非球面反光镜。LED的这个特点解决了传统信号灯存在的幻像(俗称假显示)和色片褪色问题,提高了光效。
2、省电:
LED光源在节能方面的优势是非常明显的,其显着的特点之一就是能耗低,这对灯具的应用而言是很有意义的。LED交通信号灯几乎100%LED的激发能量成为可见光,相较之下白炽灯泡有80%成为热损失,只有20%成为可见光。
3、低热能:
LED是由电能直接换成光源,产生的热极低,几乎不发热。LED交通信号灯冷却的表面可避免维修人员烫伤,且可得到较长寿命。
4、寿命长:
号灯的工作环境相对比较恶劣,严寒酷暑、日晒雨淋,因而对灯具的可靠性要求较高。一般信号灯用白炽灯泡的平均寿命是1000h,低压卤钨灯泡的平均寿命是2000h,由此而产生的维护费用很高。LED交通信号灯无灯丝震荡导致损坏,同时比较没有玻璃罩破裂问题。
5、反应快:
卤钨灯泡等所不及LED交通信号灯的是回应时间快,从而减少交事故的发生。
由于交通指挥灯在城市交通中的重要作用,每年都有大量的交通信号灯需要更新,进而引出一块比较大的市场,毕竟高利润也有利于LED生产与设计公司的发展,对于整个LED产业来说也会产生良性刺激。
LED交通信号灯面临的问题
1、大功率LED的应用,优点是大幅减少LED的数量,但是是散热和成本是需要解决的问题。
2、虽然LED交通信号灯的光强指标、电学指标和电磁相容要求在逐步提高,但是,LED信号灯的光学设计、电路设计还需要进一步优化,才能成为交通信号灯设计的主流。
3、随着节能、环保要求的提高,LED与太阳能结合的信号灯将普及,但需解决与交通信号控制机的配合问题。
总而言之,LED在交通信号灯方面的应用,其发展非常迅速,并用在交通领域应用市场前景也非常好已基本替代传统光源。虽然市面上交通信号产品已接近饱和,但是由于LED本身所具备的环保、节能、长寿命等优点,LED在交通领域的应用依然有非常大的空间。
❽ 可见光通信是利用LED的高速通断特性来传输数据,那么传输速率是由LED响应速度决定,LED调制带宽有什么用呢
传输速率由led响应速率决定,是对没有用任何调制的情况下而言;当用某种调制时,数据率bit/s就跟调制带宽及某种调制方式时逻辑0和逻辑1如何表示、所占时隙宽度有关。
❾ led灯珠的技术参数
LED灯珠参数
1、亮度
LED的亮度不同,价格不同。
灯杯:一般亮度为60-70lm;
球泡灯:一般亮度为80-90lm.
注:1W亮度为60-110lm3W亮度最高可达240lm5W-300W是集成芯片,用串/并联封装,主要看多少电流,电压,几串几并。
1W红光,亮度一般为30-40lm;1W绿光,亮度一般为60-80lm;1W黄光,亮度一般为30-50lm;1W蓝光,亮度一般为20-30lm.
LED透镜:一次透镜一般用PMMA、PC、光学玻璃、硅胶(软硅胶,硬硅胶)等材料。角度越大出光效率越高,用小角度的LED透镜,光线要射得远的。
2、抗静电能力
抗静电能力强的LED,寿命长,因而价格高。通常抗静电大于700V的LED才能用于LED灯饰
3、波长
波长一致的LED,颜色一致,如要求颜色一致,则价格高。没有LED分光分色仪的生产商很难生产色彩纯正的产品。
大功率LED灯珠详细参数及点光源选择技巧
白光分暖色(色温2700-4000K),正白(色温5500-6000K),冷白(色温7000K以上)欧洲人比较喜欢暖白
红光:波段600-680,其中620,630主要用于舞台灯,690接近红外线
蓝光:波段430-480,其中460,465舞台灯用的较多。
绿光:波段500-580,其中525,530舞台灯用的较多。
4、漏电电流
LED是单向导电的发光体,如果有反向电流,则称为漏电,漏电电流大的LED,寿命短,价格低。
5、发光角度
用途不同的LED其发光角度不一样。特殊的发光角度,价格较高。
6、寿命
不同品质的关键是寿命,寿命由光衰决定。光衰小、寿命长,寿命长,价格高。
7、LED芯片
LED的发光体为芯片,不同的芯片,价格差异很大。日本、美国的芯片较贵,台厂与中国本土厂商的LED芯片价格低于日、美。
8、芯片大小
芯片的大小以边长表示,芯片尺寸一般为:38-45mΩ,大芯片LED的品质比小芯片的要好。价格同芯片大小成正比。
9、胶体
普通的LED的胶体一般为环氧树脂,加有抗紫外线及防火剂的LED价格较贵,高品质的户外LED灯饰应抗紫外线及防火。
大功率LED灯珠详细参数及点光源选择技巧
10、显色值
正白:60-6,暖白:50-60,由于不同公司使用的封装荧光粉不一样,所以显色值也不一样。
从健康方面,采用无毒材料设计的产品价格要高,特别是室内LED灯饰,千万别贪便宜选用有异味的LED灯饰,目前仅少数几家LED厂家是用无毒材料生产,辨别的方法可以直接用鼻子分别,有臭味的产品比无臭味的价格更低很多。类似铅、汞、镉等毒素需专业人员分析。从适用环境安全看,有可靠的防尘防潮设计,材料防火、防紫外线、防低温开裂的LED产品的价格高。LED的技术参数主要有发光强度,色度,波长,色温等。
下面我们就这些参数给予简单的介绍。
光强度(LuminousIntensity;IV)
光强度定义为单位立体角所发射出的光通量,单位为烛光(Candela,cd)。一般而言,光源会向不同方向以不同强度放射出其光通量,在特定方向单位立体角所放出之可见光辐射强度即称之为光强度。
色度(Chromaticity)
人眼对色彩的感知是一种错综复杂的过程,为了将色彩的描述加以量化,国际照明协会(CIE)根据标准观测者的视觉实验,将人眼对不同波长的辐射能所引起的视觉感加以纪录,计算出红、绿、蓝三原色的配色函数,经过数学转换后即得所谓的CIE1931ColorMatchingFunction(x((),y((),z(()),而根据此一配色函数,后续发展出数种色彩度量定义,使人们得以对色彩加以描述运用。
根据CIE1931配色函数,将人眼对可见光的刺激值以XYZ表示,经下列公式换算得到x,y值,即CIE1931(x,y)色度坐标,透过此统一标准,对色彩的描述便得以量化并加以控制。
x,y:CIE1931色度坐标值(ChromaticityCoordinates)
然而,由于以(x,y)色度坐标所建构之色域为非均匀性,使色差难以量化表示,所以CIE于1976年将CIE1931色度坐标加以转换,使其所形成之色域为接近均匀之色度空间,让色彩差异得以量化表示,即CIE1976UCS(UniformChromaticityScale)色度坐标,以(u’,v’)表示,计算公式如下所示:
主波长(λD)
其亦为表达颜色的方法之一,在得到待测件的色度坐标(x,y)后,将其标示于CIE色度坐标图(如下图)上,连结E光源色度点(色度坐标(x,y)=(0.333,0.333))与该点并延伸该连结线,此延长线与光谱轨迹(马蹄形)相交的波长值即称之为该待测件的主波长。
惟应注意的是,此种标示方法下相同主波长将代表多个不同色度点,是以用于待测件色度点邻近光谱轨迹时较具意义,而白光LED则无法以此种方式描述其颜色特性。
纯度(Purity)
其为以主波长描述颜色时之辅助表示,以百分比计,定义为待测件色度坐标与E光源之色度坐标直线距离与E光源至该待测件主波长之光谱轨迹(SpectralLocus)色度坐标距离的百分比,纯度愈高,代表待测件的色度坐标愈接近其该主波长的光谱色,是以纯度愈高的待测件,愈适合以主波长描述其颜色特性,LED即是一例。
色温(ColorTemperature)
一光源之辐射能量分布与某一绝对温度下之标准黑体(BlackBodyRadiator)辐射能量分布相同时,其光源色度与此黑体辐射之色度相同,此时光源色度以所对应之绝对温度表之,此温度称之为色温(ColorTemperature),而在各温度下之黑体辐射所呈现之色度可在色度图上标出曲线,称之为蒲朗克轨迹(PlanckianLocus)。标准黑体的温度愈高,其辐射出的光线对人眼产生蓝色刺激愈多,红色刺激成分亦相对减少。然而在实际量测上,无任何光源具有跟黑体相同的辐射能量分布,换言之,待测光源之色度通常并未落在蒲朗克轨迹上。因此计算待测光源之色度坐标所最接近蒲朗克轨迹上某个坐标点,此点之黑体温度即定义为该光源之相关色温(CorrelatedColorTemperature;CCT),通常以CIE1960UCS(u,v)色度图求之,并配合色差△uv加以描述。须注意的是,此种表示方式对光源色度邻近蒲朗克轨迹时方具意义,是以对于LED量测而言,仅适用于白光LED之颜色描述。
❿ 什么样的LED光源才能用作可见光通信
近年来,随着白光发光二极管(LED)技术的大力发展,可见光通信(Visible Light Communication,VLC)成为新一代无线通信技术的研究热点之一。VLC也叫LiFi(Light Fidelity),2011年,来自爱丁堡大学的德国物理学家Hardal Hass教授在TED大会上发表了一个关于LiFi技术的演讲,首次将“VLC”称为“LiFi”。
LiFi是一种基于光(而不是电波)的新兴无线通信技术,结合了光的照明功能和数据通信功能。LiFi是在不影响LED照明的同时,将信号调制在LED光源上,通过快速开关产生人眼无法感知的高频闪烁信号来传送数据。
LiFi的优势
相比于当前主流的WiFi通信技术,LiFi有如下优势:
(1)容量方面,无线电波的频谱很拥挤,而可见光的频谱宽度(约400THz)比无线电波多10000倍;
(2)效率方面,无线电波基站的效率只有5%,大多数能量只是消耗在基站的冷却上,而LiFi的数据可以并行传输,同时提高效率;
(3)实用性方面,无线电波只是在基站中获取,不能在飞机上、手术室或者加油站使用WiFi,而全球的每个灯都可容易地接入LiFi热点;
(4)安全性方面,无线电波很容易被侵入,而可见光不可以穿墙,甚至窗帘,提供了网络的隐私安全。
作为兼顾照明和通信的新技术,LiFi在追求高传输速率的同时,不能影响照明的质量和要求,尤其是在光源的研制上。LiFi的光源既要具备通信光源调制性能好、发射功率大和响应灵敏度高等优点,又要满足照明光源高亮度、低功耗和辐射范围广等特点。
LiFi光源选择
1、LED
目前LiFi技术采用的光源大多数是白光LED,很大一部分的原因得益于LED技术的快速发展。而白光LED的实现方式主要有:蓝色LED芯片激发黄绿色荧光粉转换成白光(PC-LED)、紫外光或紫外LED激发三原色荧光粉产生白光和红、绿、蓝3种LED芯片封装在一起混合产生白光(RGB-LED)。现阶段商用的白光LED产品根据光谱成分的不同,主要分为两大类:PC-LED和RGB-LED。
LED的调制带宽决定了通信系统的信道容量和传输速率,研究LED器件的调制特性是提升新型LiFi系统性能的关键问题之一。LED调制带宽的定义是当LED输出的交流光功率下降到某一参考频率值的50%时(-3dB)的频率。由于PC-LED的黄色荧光粉光谱部分的光电响应比较滞后,导致LiFi光源的调制带宽限制在几个兆赫兹以内,从而限制了整个系统的通信速率,即使在接收端采用蓝色滤波片也未能明显改善该光源的缺陷。
因此,越来越多的LiFi研究将光源转向RGB LED,它能提供较高的调制带宽,在3种颜色的光波上用波分复用的方式提高信道容量,调制不同的数据并行传输,并在接收端通过各颜色的滤波片分别接收3种颜色,有效提高发送效率。但是RGB-LED中不同颜色的LED对于输出光通有不同的工作温度依赖性,为了实现工作温度独立的色点,需要对每个单色LED的反馈循环和驱动电流进行单独控制,这样对器件的制备带来了较高的成本和复杂的调制电路。LED的调制带宽受响应速率限制,而响应速率又受载流子寿命的影响。除了设计调制电路,降低RC(resistance-times-capacitance)延时之外,常规提高器件调制带宽的方法是增加电子空穴的辐射复合速率,减少载流子自发辐射寿命。
2、LD(激光二极管)
由于研究人员不满足LED调制达到的数据传输速率,LiFi的首次提出者HardalHass教授用激光二极管替换了现有的LED,利用激光器的高能量与高光效,传输数据的速率可以比LED快10倍。激光照明可以混合不同波长的光产生白色光,类似于RGBLED。虽然基于LED的LiFi可达到10Gb/s的数据传输速率,可以改善WiFi中7Gb/s的数据传输速率上限,但是激光传输数据的速率可以很容易超出100Gb/s。最新的报道显示,美国亚利桑那州立大学电子、计算机和能源工程学院的研发团队研制出纳米级别的白光激光器,其可以更加便利地用作LiFi光源。
在通信方面,激光二极管相比于LED,具有更快的响应速度、可以直接进行调制和耦合效率高等优点。对于普通的电注入式半导体激光器,当注入电流超过某一值时,LD可以发射受输入电流控制的调制光,其调制特性如图5所示,该点电流称为阈值电流,阈值电流以上部分直到饱和区都属于LD的工作区,而调制范围最好在线性区域内进行,所以降低器件的阈值电流,获得较大的调制工作区显得很重要。
LiFi光源的颜色
与WiFi只是关注通信性能的提升不同,LiFi的照明系统必须要考虑在提升通信性能的同时保证照明的质量。所以LiFi的光源不管是LED还是LD,都是要输出白光,而白光的颜色质量对于照明来说是非常重要的。
LED灯具颜色特征参数可以由光谱功率分布(SPD)来计算。SPD是相对于光波长的输出强度分布的数学表达,可以提供关于光谱组分的详细信息。在LiFi系统中,随着LED的驱动电流变化,SPD会有偏差。偏差的SPD能导致感知的色点漂移并且会影响颜色的显色特性,而LiFi中的特殊调制技术会更加容易受颜色质量退化的影响。通过用SPD模型测量驱动电流变化带来的SPD偏差,从而可以评价LiFi调制的颜色质量。
但是用SPD模型表征LiFi的颜色质量有很多缺点:模型中需要大量的拟合参数只能通过LED测试的 经验获得;SPD模型设计是建立在相对静止的条件,不能解释LiFi在高频电流振荡下的情况;很难用一个SPD模型来适用于所有的LED类型,例如不能解释PC-LED中的荧光粉材料产生的额外影响。另一方面可以检测LiFi在工作条件下的实时颜色特性,对于高亮度LED产品,LED的制造商需要提供不同驱动电流和调制频率下的颜色数据,如SPD、颜色坐标和显色指数(CRI)。
因为LiFi在传输数据或者空闲状态时需要提供足够亮度的无闪烁照明服务,所以LiFi设备需要具备闪烁去除和亮度调节的功能。在IEEE发布的IEEEPAR1789《LED照明闪烁的潜在健康影响(草案)》中采用了波动深度对闪烁问题进行评价。而LiFi的光源调制频率至少是每秒数百万次,所以LiFi光源的闪烁是属于无风险级别的。在亮度调节方面,除了OOK(开关键控)和VPPM(可变脉冲位置调制),还有CSK(色漂键控)调节。
2011年9月,规定了传输速度最高为95Mbit/s的可见光通信国际标准IEEE802.15.7制定完成,而且标准制定委员会的首要任务是推行“照明第一、通信第二”。
标准中的物理层PHYⅠ和Ⅱ分别支持OOK调节与VPPM调节,而物理层PHYⅢ采用CSK调制,支持多光源带宽。将可见光划分为7段光带,用3位bit标识不同的光带ID号,CSK根据光带ID号将数据调制在不同波长的光波上并行传输,提高光谱利用率,通过选择颜色的ID标识改变组合,达到亮度调节的目的。对于LED光源,物理层PHYⅢ仅工作在RGB-LED器件下,并且适合短帧发送,所以采用CSK调节的LiFi光源可以选择RGB-LED或者RGBLD,适合用于室内通信。
LiFi系统的光源布局
LiFi以其独特的优点可以广泛地应用于:智能照明、车辆交通、医院、办公室、飞机上、国防安全、水下通信、室内定位和危险环境中(如矿井、电厂和加油站等)。尤其是室内定位,美国的ByteLight公司和国内的华策光通信都已经开发出基于白光LED的室内定位系统,能够实现LiFi的单向传输,用于室内的信息推送和定位服务。
但是室内LiFi系统面临着许多的技术难题,比如在带来安全性的同时如果光线被挡住了,信号就会断掉;LiFi的双向数据传输问题等。HardalHass教授也认为LiFi不会取代WiFi,对于室内通信,LiFi可以作为WiFi的良好补充,只是在某些无线电波受限的场所,LiFi有其不错的应用空间。由于照明和防止阴影效应影响等原因,需要在室内安装多个LED灯,因而光源的合理布局是影响照明和系统性能的关键因素。
为了满足室内照明的要求,光源的布局不仅要使得室内的照度和照度均匀度满足相应的标准要求,而且要有利于人的活动安全和舒适。光源要选择高光效、合适色温、长寿命和可靠性的产品。室内的照明布局需要考虑基础照明、重点照明、装饰照明和应急照明的要求。
考虑到LiFi系统中不同路径引起的码间干扰、室内人员走动和物理阴影效应对通信系统的影响,在照顾到重点照明部分的LiFi通信的同时,可以采用OFDM(正交频分复用)方案提高LiFi系统的整体性能和实现带宽资源的有效利用。比如基于PC-LED的LiFi系统,采用OFDM调制技术可以通过滤除响应速度较慢的荧光成分,拓展了调制带宽,还可以对抗多径效应,实现高速数据传播和通信,但是这样的系统是否满足照明的均匀性还尚未得到证实。