导航:首页 > 黄金交易 > vd3指标低

vd3指标低

发布时间:2021-06-06 09:07:59

㈠ 男性摄入VD3有什么效果啊!

据调查,男性摄入维生素D 400 IU/d 可大幅降低多种癌症的几率! 心

㈡ vd3是什么

VD3是维生素D类,是类固醇衍生物,目前认为它也是一种类类固醇激素。

维生素D是一种脂溶性维生素,有五种化合物,对健康关系较密切的是维生素D2和维生素D3。它们有以下三点特性:它存在于部分天然食物中;人体皮下储存有从胆固醇生成的7-脱氢胆固醇,受紫外线的照射后,可转变为维生素D3。

(2)vd3指标低扩展阅读:

维生素D(vitamin D )为固醇类衍生物,具抗佝偻病作用,又称抗佝偻病维生素。目前认为维生素D也是一种类固醇激素,维生素D家族成员中最重要的成员是VD2(麦角钙化醇)和VD3(胆钙化醇)。维生素D均为不同的维生素D原经紫外照射后的衍生物。植物不含维生素D,但维生素D原在动、植物体内都存在。

维生素d(Vd)是环戊烷多氢菲类化合物,可由维生素d原(provitamind)经紫外线270~300nm激活形成。动物皮下7-脱氢胆固醇,酵母细胞中的麦角固醇都是维生素d原,经紫外线激活分别转化为维生素d3及维生素d2量少,但人工照射者多为此型。

维生素d的最大吸收峰为265nm,比较稳定,溶解于有机溶媒中,光与酸促进异构作用,应储存在氮气、无光与无酸的冷环境中,油溶液加抗氧化剂后稳定,水溶液由于有溶解的氧不稳定。双键系统还原也可损失其生物效用。

㈢ vc、va、ve有什么功能哪里可以买到

维生素是人体代谢中必不可少的有机化合物。人体有如一座极为复杂的化工厂,不断地进行着各种生化反应。其反应与
酶的催化作用有密切关系。酶要产生活性,必须有辅酶参加。已知许多维生素是酶的辅酶或者是辅酶的组成分子。
因此,维生素是维持和调节机体正常代谢的重要物质。可以认为,维生素是以“生物活性物质”的形式,存在于人体组织中。
维生素大部分不能在人体内合成,或者合成量不足,不能满足人体的需要。因而,必须从食物中摄取。食物中维生素的含量
较少,人体的需要量也不多,但却是绝不可少的物质。膳食中如缺乏维生素,就会引起人体代谢紊乱,以致发生维生素缺乏症。
如缺乏维生素A会出现夜盲症、干眼病和皮肤干燥;
缺乏维生素D可患佝偻病;
缺乏维生素B1可得脚气病;
缺乏维生素B2可患唇炎、口角炎、舌炎和阴囊炎;
缺乏PP可患癞皮病;
缺乏维生素B12可患恶性贫血;
缺乏维生素C可患坏血病。

维生素是个庞大的家族,就目前所知的维生素就有几十种,大致可分为(脂溶性)和(水溶性)两大类。

前者包括维生素A、D、E、K,后一类包括维生素B族和维生素C,以及许多“类维生素”。

现在医学上发现的维生素主要有:

【脂溶性维生素】

维生素A: 维持正常视力,预防夜盲症;维持上皮细胞组织健康;促进生长发育;增加对传染病的抵抗力;
预防和治疗干眼病。
维生素D: 调节人体内钙和磷的代谢,促进吸收利用,促进骨骼成长。
维生素E: 维持正常的生殖能力和肌肉正常代谢;维持中枢神经和血管系统的完整。
维生素K: 止血。它不但是凝血酶原的主要成分,而且还能促使肝脏制造凝血酶原。小儿维生素K缺乏症

【水溶性维生素】

维生素B1:保持循环、消化、神经和肌内正常功能;调整胃肠道的功能;构成脱羧酶的辅酶,参加糖的代谢;能预防脚气病。
维生素B2:又叫核黄素。核典素是体内许多重要辅酶类的组成成分,这些酶能在体内物质代谢过程中传递氢,它还是蛋白质、
糖、脂肪酸代谢和能量利用与组成所必需的物质。能促进生长发育,保护眼睛、皮肤的健康。
泛酸(维生素B5): 抗应激、抗寒冷、抗感染、防止某些抗生素的毒性,消除术后腹胀。
维生素B6: 在蛋白质代谢中起重要作用。治疗神经衰弱、眩晕、动脉粥样硬化等。
维生素B12。抗脂肪肝,促进维生素A在肝中的贮存;促进细胞发育成熟和机体代谢;治疗恶性贫血。
维生素B13(乳酸清)。
维生素B15(潘氨酸)。主要用于抗脂肪肝,提高组织的氧气代谢率。有时用来治疗冠心病和慢性酒精中毒。
维生素B17。剧毒。有人认为有控制及预防癌症的作用。对氨基苯甲酸。在维生素B族中属于最新发现的维生素之一。
在人体内可合成。
肌醇: 维生素B族中的一种,和胆碱一样是亲脂肪性的维生素。
维生素C:连接骨骼、牙齿、结缔组织结构;对毛细血管壁的各个细胞间有粘合功能;增加抗体,增强抵抗力;促进红细胞成熟。
维生素P:维生素PP(烟酸)。在细胞生理氧化过程中起传递氢作用,具有防治癞皮病的功效。
叶酸(维生素M):抗贫血;维护细胞的正常生长和免疫系统的功能。
维生素T:帮助血液的凝固和血小板的形成。
维生素U:治疗溃疡上有重要的作用。

维生素是人体营养、生长所需的有机化合物。机体如果缺乏维生素,就会出现某种疾病。因此有些人认为维生素是营养素,摄
入是“多多益善”。人需要维生素越多越好吗?答案是否定的。合理营养的关键在于“适度”。过多摄入某些维生素,对身体不
仅无益反而有害。

我们知道,维生素大致可分为水溶性(维生素B、C)和脂溶性(维生素A、D、K等)两大类。水溶性类的维生素多余部分一般可随尿
液排出体外,脂溶性类的维生素A或D,多余者不能排出体外。这样就给人们一个印象以为水溶性维生素食多了无害,有人主张
每日口服维生素C3—5克以达到保健的目的。其实这是有害的,实验证实,长期日服维生素C1克以上时,可引起草酸尿、高尿酸
血症、高外血症。有的人全身可出现皮疹、浮肿、血压下降、恶心。在脂溶性维生素中,以维生素A和维生素D服用量过大而引起
的中毒最为常见。维生素A过剩时,将引起不眠、气喘、眩晕、脱发、恶心、腹泻等症;维生素D过剩时,可引起食欲不振,倦怠、
便秘、体重下降及低烧等。

正常人每日需要维生素C50—100毫克,维生素A2500—3000国际单位,维生素D300—400国际单位。
从营养上讲,所谓维生素应该是人体不能合成(或合成数量不能满足需要)而在人体正常代谢过程和调节生理功能所不可缺少的
一类物质。它们是必须由食物供给的营养素。因此缺乏时就会出现某种典型的临床症状。截止目前为止并未发现因缺乏苦杏仁
甙而患任何缺乏症的,因此这两种物质根本不能称为维生素。
维生素B15和维生素B17是国外一些营养学者提出的有益于人体健康的食物成分,并命之为维生素,但至今均未被世界学者们
所公认。

在近来的研究表明,维生素还有着一些特殊的功用,如泛酸的情绪调节作用,叶酸和维生素B12的降低DNA损耗作用,叶酸加B6
有益心血管等。

对于维生素补充,应该从饮食和维生素制剂两方面来补充。水果蔬菜的维生素含量高,但由于每种蔬菜和水果的维生素含量
都不同,未必能够在各方面均衡补充维生素,蔬菜水果在加工、烹调中维生素也有损失,维生素制剂就能够起到均衡的作用。
但维生素制剂不容易吸收,又非天然绿色,因此还是以水果蔬菜的补充为主。
摄取维生素时的注意事项||对维生素的错误认识||常见维生素制剂||维生素辅助治疗||维生素与儿童健康 相关参考:维生素
和健康专栏(专栏作者:林凡顺)胡萝卜素

参考资料:
维生素怎样发挥作用
如果我们把人类的身体设想为汽车的引擎,维生素就有如活塞一样。这种惊人的物质在食物中含量甚微,对人体具有什么作用呢?

● 维生素经由酶系统使人体的代谢正常化。只要欠缺一种维生素,就可能危及全身。
维生素是人体酶系统的构成要素。这个酶系统就有如活塞的点火装置一样--调整身体的状况,使各部分有效的运作,促进人体的
正常代谢,使全身正常化。
若与蛋白质、脂肪、碳水化合物等其他营养素比较的话,维生素的摄取量(即便是因治疗的目的而大量摄取也一样)是非常微小
的。但是只要欠缺任何一种维生素,便可能会导致全身陷入危险的状态。

【造成维生素缺乏的主要原因有】:
①膳食中含量不足。可因贫困、膳食单调、偏食等使摄入膳食中维生素的量不能满足机体的需求;
②体内吸收障碍。如肠蠕动加快,吸收面积减少,长期腹泻等使维生素的吸收、储存减少;
③排出增多。可因授乳、大量出汗、长期大量使用利尿剂等使之排出增多;
④因药物等作用使维生素在体内加速破坏;
⑤生理和病理需要量增多;
⑥食物加工烹调不合理使维生素大量破坏或丢失。

【预防维生素缺乏的措施】:
①提供平衡膳食;
②根据人体的生理、病理情况及时调整维生素供给量;
③及时治疗影响维生素吸收的肠道疾病;
④食物加工烹调要合理,尽量减少维生素的损失。

脂溶性维生素包括A、D、E、K四种,在食物中与脂类共同存在,在肠道吸收时也与脂类吸收有关,排泄效率低,故摄入过多时,
可在体内蓄积,产生有害作用,甚至发生中毒。水溶性维生素包括B族维生素(B1、B2、B6、B12、PP等)的抗坏血酸(VC)。
水溶性维生素的特点:
①溶于水,不溶于脂肪及有机溶剂;
②容易从尿中排出体外,且排出效率高,故大量食入一般不会产生蓄积和毒害作用;
③绝大多数以辅酶或辅基形式参加各种酶系统工作,在中间代谢的许多环节中都起着极重要的作用;
④其体内营养水平多数都可在血液和尿中反映出来。

一、维生素A(VA)和维生素A原(类胡萝卜素)

维生素A(retinol)又名视黄醇,与类胡萝卜素一样对热、酸、碱稳定,一般加工防烹调方法不会引起破坏,但易被氧化,
高温与紫外线可促进这种氧化破坏,若与磷脂、VE和VC及其他抗氧化剂并存则较为稳定。
(一)生理功能
1.参与视网膜视紫质的合成与再生,维持正常暗适应能力,维持正常视觉。
2.参与上皮细胞与粘膜细胞中糖蛋白的生物合成,维持上皮细胞的正常结构和功能。
3.促进蛋白质的生物合成和骨细胞的分化,促进机体的生长和骨骼的发育。
4.免疫球蛋白也是糖蛋白,其合成与VA有关,故有增加机体抗感染的作用。
5.VA可促进上皮细胞的正常分化并控制其恶变,从而有防癌作用。
(二)VA缺乏病
由于VA和VA原摄入不足所引起的营养缺乏病,临床上首先出现暗适应能力降低,进一步发展可形成夜盲症。
皮肤基底细胞增生和过度角化,特别是毛囊口角化为毛囊丘疹(多发生在四肢伸肌表面、肩部、颈部、背部,臀部的毛囊周围);
汗腺、皮脂腺萎缩、皮肤干燥、毛发干枯脱落;结膜角化、泪腺分泌减少,形成干眼病,进一步发展可出现角膜消溃疡、穿孔、
失明、还可出现结膜皱折和毕脱斑;骨骼发育受阻、免疫和生殖功能下降。
据WHO报道,因VA缺乏,全世界每年有50万名学龄前儿童患有活动性角膜溃疡,600万人患干眼症,这是影响视力和导致失明的
重要原因。
我国人民膳食中动物性食品摄入少,主要由蔬菜中摄取β-胡萝卜素(β-carotene)故轻度VA缺乏还是相当广泛的,应当加强防
制工作。
(三)VA过多症
VA进入机体后排泄效率不高,长期过量摄入可在体内蓄积,引起VA过多症。成年人长期每天摄入15000μg视黄醇当量,即可出现
中毒症 状,多数因过量摄入VA制剂或食入过冬狗或狼的肝脏所致。主要症状为厌食、过度激惹、长骨末端外周疼痛、肢体活动
受限、头发稀疏、 肝肿大、肌肉僵硬、皮肤搔痒、头痛、头晕等。及时停止食用,症状可很快消失。
成人一次摄入VA99000~33000μg视黄醇当量,儿童一次超过99000μg视黄醇当量,可发生VA急性中毒。成人于6~8小时后出现
嗜睡或 过度兴奋、头痛、呕吐、颅内压增高,12~30小时后皮肤红肿变厚,继之脱皮(以手、脚掌最为明显);婴幼儿急性中
毒以颅内压增 高为其主要特征,出现前囱饱满、恶心、呕吐、眼底水肿,脑脊液压力增高,血清VA含量剧增。
(四)食物来源
天然VA只存在于动物体内。动物的肝脏、鱼肝油、奶类、蛋类及鱼卵是VA的最好来源。VA原(VA的前体)类胡萝卜素,广泛分布
于植物性食品中,其中最重要的是β-胡萝卜素。红色、橙色、深绿色植物性食物中含有丰富的β-胡萝卜素,如胡萝卜、红心甜薯、
菠菜、苋菜、杏、芒果等。理论上1molβ-胡萝卜素在体内可分解成2molVA,但由于胡萝卜素有吸收利用率远低于VA,实验证明,
就其生理活性而言,6μgβ-胡萝卜素才能相当于1μgVA。β-胡萝卜素是我国人民膳食中VA的主要来源。
(五)供给量
婴幼儿与儿童的不同年龄段,供给量有所不同(200~750μg视黄醇当量),从13岁少年开始至成年老年皆为800μg视黄醇当量。
孕妇1000μg,乳母1200μg视黄醇当量。
1μg胡萝卜素=0.167μg视黄醇当量。以往VA的量常用国际单位(IU)表示。1 IUVA=0.33μgVA=0.33μg视黄醇当量。
当从膳食中既摄入VA又食入β-胡萝卜素时,应全部折合成μg视黄醇当量,即:
视黄醇当量(μg)=VA(μg)+0.167×β-胡萝卜素(μg)。
(六)人体VA营养状况评定
评定人体内VA营养状况常用指标有:
①测定血清VA含量。成人血清VA正常含量为300~900μg视黄醇当量/L,低于120μg为缺乏,但因血清VA含量高低受许多因素影响,
故应对具体情况作具体分析
②视觉暗适应功能测定。VA缺乏者暗适应能力比正常人差;
③血浆中视黄醇蛋白测定。国外报道其含量与血浆VA含量有正相关趋势。

二、维生素D(VD)

VD是所有具有胆钙化醇生物活性的类固醇统称。其中VD2(钙化醇,calciferol)与VD3(胆钙醇,cholecalciferol)是最重
要的VD。VD2与VD3结构相似、功能相同,皆为脂溶性维生素,对热、氧、酸、碱均较稳定,主要区别于两者的来源不同,VD2来源
于植物,大多数植物中含有微量的麦角固醇,植物叶曝露于日光后形成VD2(称麦角钙化醇或钙化醇),VD3(又称胆钙固醇或胆
钙醇)来源于动物,人与动物皮肤中的7-脱氢胆固醇经紫外线照射后即可转变成VD3,然后运往肝、肾转化为具有生物活性的形式,
再发挥其重要生理功能。
(一)生理功能
VD对骨骼形成极为重要,其主要功能是调节钙和磷代谢,促进小肠对钙和磷的吸收与利用,构成健全的骨骼与牙齿。
(二)VD缺乏病
VD与机体内钙、磷代谢密切相关,故当VD缺乏时,儿童发生佝偻病,成人出现骨软化症和骨质疏松症。佝偻病常在婴幼儿中发生,
因骨骼的软骨连接处及骨骼部位增大,临床上可见到方颅、肋骨串珠、鸡胸;由于骨质软化,承受较大压力的骨骼部分发生弯曲
变形,如脊柱弯曲,下肢弯曲,还可发生囟门闭合迟缓,胸腹之间形成哈里逊沟。若成人缺乏VD,可使成熟的骨骼脱钙而发生骨
质软化症和骨质疏松症,妊娠与授乳期妇女最易发生,好发部位为骨盆与下肢,再逐渐波及到脊柱和其他部位。
(三)VD过多症
VD可以在体内蓄积,过多摄入可以引起VD过多症。成人每日摄入2500μg,儿童每日摄入500~1250μg,数周后即可发生中毒。
表现为头痛、厌食、恶心、口渴、多尿、低热、嗜睡、血清钙、磷增加,软组织钙化,可出现肾功能衰竭、高血压等症状。
停止食用,数周后可恢复正常。
(四)食物来源
VD3含量最丰富的食物为鱼肝油,动物肝脏和蛋黄,牛奶与其他食物中VD3的含量较少。VD2来自植物性食品,一般说来,人只要
能经常接触阳光,在一般膳食条件下,不会造成VD缺乏。以牛奶为主食的婴儿,应适当补充鱼肝油,并经常接受日光照晒,有
利于生长发育。
(五)供给量
成年人每日供应5μg,孕妇、乳母、儿童与青少年及老年人均为10μg。
(六)营养状况评定
目前多用高效液相色谱法测定血浆中的25-OH-D3,作为鉴定VD3营养状况的指标,结果准确可靠。

三、维生素E(VE)

VE是所有具有α-生育酚生物活性的色酮衍生物的统称,其中以α-生育酚的活性最高。易溶于脂肪溶剂,对热与酸稳定,对碱
敏感,可缓慢地被氧化破坏。
(一)生理功能
VE具有很强的抗氧化作用,能阻止不饱和脂肪酸受到过氧化作用的损伤,从而维持着不饱和脂肪酸较多的细胞膜的完整性和正
常功能;由于预防了脂质过氧化,从而消除了体内其他成分受到脂质过氧化物的损害。因此,具有延缓衰老、预防大细胞性溶
血性贫血作用;还与性器官和胚胎发育有关,动物试验表明,大鼠缺乏VE,将引起雌、雄动物生殖系统的损害,使生殖上皮发
生不可逆变化,雄性可致精子停止形成和睾丸退化,雌性可致胚胎死亡。临床上常用来治疗不孕症、习惯性流产。
(二)食物来源
各种植物油(麦胚油、棉籽油、玉米油、花生油、芝麻油)、谷物的胚芽、许多绿色植物、肉、奶油、奶、蛋等都是VE良好或
较好的来源。
(三)供给量
儿童为3~8mg,少年与成年人为10mg,孕妇、乳母与老人为12mg。
(四)营养水平评定
1.判定血清中α-生育酚的含量,这是直接反映体内VE储存量是否充足的一个指标,一般认为低于5mg/L为营养状况不良。
2.红细胞体外试验,体内缺乏VE者,其体外红细胞对H2O2引起的溶血比正常人敏感。

四、维生素B1(VB1)

VB1(硫胺素,thiamine)在高温时,特别是在高温碱性溶液中,非常容易破坏,并易受紫外线破坏,在酸性溶液中,稳定性
较好,甚至加热时也是稳定的。
(一)生理功能
VB1是脱羧辅酶的主要成分,参与碳水化物代谢中丙酮酸及α-酮戊二酸的氧化脱羧作用;能抑制胆碱脂酶的活性,维持胃肠
道的正常蠕动和消化腺的分泌。
(二)VB1缺乏症
VB1缺少时,神经组织中的碳水化物代谢首先受到阻碍,致使丙酮酸堆积在神经组织中,引起多发性神经炎和脚气病(beriberi),
又称脚气病多见于以大米为主食的地区。在东南亚地区特别是菲律宾、越南、泰国、缅甸等国尤为多见。我国建国后已不多见,
但近年来由于生活水平提高,食用精白米增多,在某些地区患病率又有回升。还可因酗酒、各种胃肠道疾病使之吸收过少,
结核、甲亢等消耗性疾病使之相对不足而引起发病。
由于饮食不足引起者,一般在摄取3个月低VB1饮食后出现症状。早期表现为疲乏无力,肌肉酸痛,食欲下降,体重减轻。
继之出现典型的症状:上升性对称性周围神经炎,先发生在下肢,呈袜套状分布;感觉异常、肌肉无力、心动过速、心前区
疼痛;严重者表现为心力衰竭,水肿。临床上可分为四型:
①干型,以周围神经炎表现为主;
②湿型,以水肿和浆液性渗出为主;
③暴发型,以急性心血管系统表现为主,同时伴有膈神经和喉返神经瘫痪;
④混合型,同时有上述两型以上表现者。
(三)食物来源
VB1含量丰富的食物有粮谷类、豆类、干果、酵母、硬壳果类,尤其在粮谷类的表皮部分含量更高,故碾磨精度不宜过度。
动物内脏、蛋类及绿叶菜中含量也较高,芹菜叶、莴笋叶中含量也较丰富,应当充分利用。土豆中虽含量不高,但以土豆
为主食的地区,也是VB1的主要来源。某些鱼类及软体动物体内,含有硫胺素酶,生吃可以造成其他食物中VB1的损失,故
“生吃鱼、活吃虾”的说法,既不卫生,也不科学。
(四)供给量
VB1的需要量与机体热能总摄入量成正比,故VB1的供给量以每4.2MJ(1000kcal)热能供给多少来表示,据此,我国的推荐
VB1供给量为0.5mg/4.2MJ。
(五)营养水平评定
1.负荷试验 被测者于清晨口服VB15mg,然后收集4小时以内尿液,测定其中VB1含量:<100μg为营养缺乏,100~200μg为
不足,>200μg为正常,>400μg为充裕。
2.空腹一次尿液中VB1和肌酐含量测定 二者比值<27为不足,27~65为低下,66~129为适宜,≥130为过高。
3.红细胞转羟乙醛酶活力测定 这是测定VB1营养状况的特异指标,若TPP(硫胺素焦磷酸酯)效应>16%即表示VB1缺乏。

五、维生素B2(VB2)

VB2(核黄素,riboflavin)为橙黄色晶体,280℃熔化并分解,在中性和酸溶液中对热稳定,在碱性条件下易分解破坏。游离
VB2对光敏感,特别是紫外光。
(一)生理功能
VB2是机体各种黄素酶的辅酶部分,在生物氧化过程中广泛地起着递氢作用;参与机体内三大生热营养素的代谢过程,与热能
代谢直接相关。
(二)VB2缺乏症(riboflavin deficiency)
机体缺乏VB2则出现能量和物质代谢的紊乱,表现在外生殖器、舌、唇、口角的综合征。据我国两次营养调查显示,居民平均
摄入量只有供给量标准的1/2。目前我国人民食用动物性食品较少,易造成VB2缺乏。临床表现为:
①口角炎;②唇炎;③舌炎;④睑缘炎;⑤阴囊炎;⑥脂溢性皮炎。
(三)食物来源
动物性食物含VB2较多,尤以肝、心、肾中丰富,奶、蛋类食品中含量也不少;植物性食品除绿色蔬菜和豆类外一般含量都不高。
(四)供给量
与VB1相同,0.5mg/4.2MJ。
(五)营养水平评定
1.测定细胞中VB2含量 这是评定VB2营养水平的良好指标,含量<140μg/L为缺乏,>200μg/L为良好。
2.负荷试验 口服5mgVB2后,4小时尿液中排出VB2量<350μg为不足。
3.VB2肌酐比值(μg/g)<27为不足,27~79为低下,80~269为适宜,>270为充裕。
4.谷胱甘肽还原酶活性测定 酶还原活性系数(AC)>1.2表示组织中VB2不足。

六、尼克酸(VPP)

尼克酸(nicotinic acid)亦称烟酸,在生物组织中,尼克酰胺是主要的存在形式,它是尼克酸(VPP)具有生物活性的衍生物,
可以水解为VPP,两者均为溶于水的较稳定的白色结晶,一般将VPP称为抗癞皮病维生素,VPP在普通烹调温度中非常稳定,在酸
性或碱性溶液中也不会有很多损失。
(一)生理功能
VPP是构成辅酶I和辅酶Ⅱ的重要成分,二者均为脱氢酶的辅酶,在生物氧化过程中,起到传递氢原子的作用,如果没有VPP,人
体就不能利用碳水化物、脂肪和蛋白质来产生能量,也无法合成蛋白质和脂肪;对维持皮肤、神经和消化系统正常功能起着重要
作用;还有扩张血管作用。
(二)VPP缺乏病(又称癞皮病,糙皮病)
VPP缺乏病(pellagra)多发生在以玉米为主食的地区,过去,相当一段时间内新疆南部居民以玉米为主食,又无加碱食用的习惯,
副食品供应不足,故发生过癞皮病流行,部分地区居民患病率高达50%。经长期防治,加之生活水平的提高,目前此病已基本得到
控制。
其典型症状为皮炎(dermatitis)、腹泻(diarrhea)及痴呆(demantia)即所谓“三D”症。早期常有食欲不振、消化不良、腹
泻、失眠、头痛、无力、体重减轻等现象。继之于皮肤裸露部位出现对称性皮炎,红、痒、皮肤呈暗褐色,有色素沉着,皮肤粗糙,
有明显浮肿,可伴有疱疹、溃疡与感染。消化道与舌部也有炎症,舌呈猩红色,有溃疡,出现恶心、呕吐、腹泻等症状。神经系统
除早期症状外,还有肌肉震颤,腱反射过敏或消失,可有烦躁、焦虑、抑郁、健忘、少数病人可有精神失常。其他症状有女性阴道
炎、月经不调、男性排尿时有烧灼感、性欲减退等。
(三)食物来源
富含VPP的食物为动物肝脏、酵母、花生、全谷、豆类及肉类含量较高;玉米中VPP含量不算少,但为结合型的,不能直接被人体
吸收利用。因此,为了预防癞皮病,应用碱处理玉米(如墨西哥用石灰处理玉米,我国新疆在防治癞皮病过程中推广玉米加碱食用)
可释放出大量游离型VPP,在预防癞皮病中收到了良好的效果。同时应当在膳食中增加豆类、大米和小麦粉的比例,降低玉米的摄
入量。
另外,体内所需的VPP一部分可由色氨酸转换而来,约60mg色氨酸可转换为1mgVPP。
(四)供给量
不仅与热能需要量成正比,而且为VB1、VB2供给量的10倍,推荐供给量为5mg/4.2MJ。
(五)营养水平评定
1.测定VPP代谢产物排出量 从尿中排出的形式主要为N’-甲基尼克酰胺(N’-Me)和2-吡啶酮-甲基尼克酰胺(2-吡啶酮),
二者排出的总量>5mg为正常,若N’-Me为0.5~0.8mg,2-吡啶酮<1mg为缺乏,并很快出现临床症状。国外用2-吡啶酮/N’
–Me比值来评定VPP的营养水平,比值>1.3为正常,<1为缺乏。
2.给受检者以标准膳食,此膳食提供VPP10mg和色氨酸1000mg,收集24小时尿液,测定尿中N’-Me和2-吡啶酮含量,营养水平较
好者两种代谢产物的总量为7.0~37mg,癞皮病患者其总量<3mg。

七、维生素C(抗坏血酸,VC)

VC(ascorbic acid)为一种酸性多羟化合物,易溶于水,在干燥及无光线条件下比较稳定。很容易被氧化,加热或暴露于空气中、
碱性溶液及金属离子(Cu2+,Fe3+)都能加速其氧化。
(一)生理功能
参与体内氧化还原过程,维持组织细胞的正常能量代谢和调节细胞内氧化还原电位;促进体内胶原合成;将血浆运铁蛋白中三价铁
还原为二价铁,促进铁的吸收;增加机体的抗病能力,促进伤口愈合;阻断亚硝胺在体内形成,具有防癌和抗癌作用;大量VC还可
促进心肌利用葡萄糖和心肌糖原的合成。
(二)VC缺乏病
人类缺乏VC可引起坏血病,表现为毛细血管脆性增加,牙龈肿胀与出血,牙齿松动、脱落、皮肤出现瘀血点与瘀斑,关节出血可形
成血肿,鼻衄,便血,月经过多。还能影响骨骼正常钙化,出现伤口愈合不良,抵抗力低下,肿瘤扩散等。我国北方地区新鲜水果
蔬菜比南方少,故VC缺乏病较之南方更为多见。
(三)食物来源
VC主要来源于新鲜蔬菜和水果,水果中以酸枣、山楂、柑桔、草莓、野蔷薇果、弥猴桃等含量高;蔬菜中以辣椒含量最多,其他蔬
菜也含有较多的VC,蔬菜中的叶部比茎部含量高,新叶比老叶高,有光合作用的叶部含量最高。干的豆类及种籽不含VC,但当豆或
种籽发芽后则可产生VC。
(四)供给量
从出生至12岁依年龄不同为30~50mg,少年、成年、老年皆为60mg,孕妇80mg,乳母100mg。
(五)营养水平评定
1.负荷试验 口服500mgVC后,4小时尿液中排出量>3mg为正常,1~3mg为不足,<1mg为缺乏。
2.测定白细胞中VC的含量<2mg/100g为营养不足。

㈣ 2个月小狗多运动对骨骼不好吗

最好不要强制狗狗运动,让其自由活动就好。因为小狗此时真处于快速生长阶段,骨骼,软骨,肌肉发育都还不完全,所以过多的额外运动会对其骨骼,软骨及肌肉系统造成一定的损伤。另外狗狗此时应该注意钙质的沉积和吸收,补充。给与一定量的钙质,并且一定要辅助以25羟基维生素D(简称25D)或者VD3。一定要注意的是补充钙质的同时一定要补充25D,否则补充再多的钙质也是没有意义的。并且补充过量的钙质会起到损害狗狗健康的负面作用。

上面既然提到了25D(25羟基维生素D),那我就多说一点吧。结合小狗补钙的问题介绍一下25D。
一般情况下小狗断奶后,会进入持续几个月甚至更长的比较快速的生长状态,骨骼的快速生长尤其明显。此阶段对于小狗一生的生长至关重要。特别是对于大中型犬的幼犬,科学合理的补充钙质及其它营养物质更是重中之重。我根据多年的养狗经验结合动物医学的专业背景试着总结了关于幼年狗狗补充钙质的几点经验希望可以帮到家中有狗宝宝或者打算养小狗的朋友们。首先我们说说钙制剂的选择问题。大致可以分为钙片类,钙粉类,还有液体离子钙。剂型的演变过程其实也就是补钙产品的发展史。就目前来说液体离子钙就最容易为机体吸收的。可以作为推荐。大家也可以根据个人情况进行选择补钙产品的剂型。但是钙制剂剂型的选择还不是最为关键的问题。
多给狗狗晒太阳会对狗狗的身体健康和骨骼发育有好处,这是大家都习以为常的共识了。晒太阳的过程到底发挥了怎样的作用,恐怕有不少人都是一知半解。阳光中的紫外线照射,会促使皮肤中的7-脱氧胆固醇经过一系列反应转化成VD3。VD3被人们普遍认为是调节体内钙磷平衡,促进钙磷肠吸收的不可或缺的关键物质。换句话说,就是如果没有VD3的参与,补钙的行为就犹如石沉大海。补钙只要适量就好,并且长期过量补钙还是适得其反,出现各种危害。会出现骨质疏松,发育迟缓,智力下降,骨头短粗,甲状腺机能减退等等。所以大剂量补钙是不可取的。如何让钙吸收才是关键。而对于狗狗骨骼钙质沉积最重要的VD3实际上是没有生物活性的。发挥作用的其实是VD3经过肝脏代谢之后产生的25-羟基维生素D3。
大家应用最广泛的还是VD3,因为目前全世界范围内能生产25-羟基维生素D3的公司、厂家也是屈指可数的。人的临床试验和畜牧业动物试验已经证实了25-羟基维生素D3有着众多VD3无可比拟的重要作用。而维持动物体钙磷平衡、防治狗狗各年龄段的骨骼疾病只是其中之一。
25-羟基维生素D3是VD3经过肝脏代谢的产物,拥有众多强大功能。可以说是VD3的全面升级版。由于它直接绕过肝脏代谢,不会给肝脏增加代谢负担。这样就特别适合脏器功能发育不完善的幼年狗狗和脏器功能减退的老年狗狗服用。而且他们往往存在或者有发生骨骼疾病的危险,是对25-羟基维生素D3特别需要的群体。还有肝脏患有疾病的狗狗也特别适用25-羟基维生素D3。
25-羟基维生素D3已经被美国食品药品管理局(FDA)列为检测营养状况的主要指标之一,并且将其用于药品、食品和保健品的提案已在欧盟通过。它还具有以下几个作用。1.全面提升免疫力,参与和强化机体的免疫应答反应。2.抑制细胞过度化增殖,预防和辅助治疗恶性肿瘤。3.预防动脉硬化,降低心血管系统发病率。以上列举了几个最主要的作用。还有一些像改善狗狗精神状态,避免忧郁。减少皮肤病的发病率,改善狗狗食欲不振的情况等等作用。
25D有诸多好处,理论上是可以通过补充VD3来获取25D的,但是实际效果并理想。我分析人物主要是一下3个原因。首先,生活在城市的大多数狗狗普遍缺乏充足的阳光照射,造成自身合成VD3的量不足。其次,VD3经肝脏转化受个体差异,肝脏功能,病理状况等诸多因素的影响,以至转化率十分不稳定。最后,即便是理想状态下,VD3经过肝脏转化后得到的25-羟基维生素D3的量也是很低的。
25D在众多领域的的不断闪光,使得我们不得不重新审视和定义传统的VD3。它已经完全摆脱防治佝偻病特效药的定义。摇身一变,成为了功效众多的营养物质,具有了日常服用的保健品的功效。全面的了解25-羟基维生素D3之后,会使我们传统的“先得病,再医治”的观念转变为“全面预防,长久保护”的全新健康观念。25-羟基维生素D3必定会全面取代VD3,并且较之更好的更全面的发挥作用。

㈤ 各种维生素不足 给人体会带来什么影响

维生素是人体代谢中必不可少的有机化合物。人体有如一座极为复杂的化工厂,不断地进行着各种生化反应。其反应与酶的催化作用有密切关系。酶要产生活性,必须有辅酶参加。已知许多维生素是酶的辅酶或者是辅酶的组成分子。因此,维生素是维持和调节机体正常代谢的重要物质。可以认为,维生素是以“生物活性物质”的形式,存在于人体组织中。 维生素大部分不能在人体内合成,或者合成量不足,不能满足人体的需要。因而,必须从食物中摄取。 食物中维生素的含量较少,人体的需要量也不多,但却是绝不可少的物质。膳食中如缺乏维生素,就会引起人体代谢紊乱,以致发生维生素缺乏症。如缺乏维生素A会出现夜盲症、干眼病和皮肤干燥;缺乏维生素D可患佝偻病;缺乏维生素B1可得脚气病;缺乏维生素B2可患唇炎、口角炎、舌炎和阴囊炎;缺乏PP可患癞皮病;缺乏维生素B12可患恶性贫血;缺乏维生素C可患坏血病。 维生素是个庞大的家族,就目前所知的维生素就有几十种,大致可分为脂溶性和水溶性两大类。前者包括维生素A、D、E、K,后一类包括维生素B族和维生素C,以及许多“类维生素”。 现在医学上发现的维生素主要有:
脂溶性维生素

维生素A。维持正常视力,预防夜盲症;维持上皮细胞组织健康;促进生长发育;增加对传染病的抵抗力;预防和治疗干眼病。
维生素D。调节人体内钙和磷的代谢,促进吸收利用,促进骨骼成长。
维生素E。维持正常的生殖能力和肌肉正常代谢;维持中枢神经和血管系统的完整。
维生素K。止血。它不但是凝血酶原的主要成分,而且还能促使肝脏制造凝血酶原。小儿维生素K缺乏症

水溶性维生素
维生素B1。保持循环、消化、神经和肌内正常功能;调整胃肠道的功能;构成脱羧酶的辅酶,参加糖的代谢;能预防脚气病。
维生素B2。又叫核黄素。核典素是体内许多重要辅酶类的组成成分,这些酶能在体内物质代谢过程中传递氢,它还是蛋白质、糖、脂肪酸代谢和能量利用与组成所必需的物质。能促进生长发育,保护眼睛、皮肤的健康。
泛酸(维生素B5)。抗应激、抗寒冷、抗感染、防止某些抗生素的毒性,消除术后腹胀。
维生素B6。在蛋白质代谢中起重要作用。治疗神经衰弱、眩晕、动脉粥样硬化等。
维生素B12。抗脂肪肝,促进维生素A在肝中的贮存;促进细胞发育成熟和机体代谢;治疗恶性贫血。
维生素B13(乳酸清)。
维生素B15(潘氨酸)。主要用于抗脂肪肝,提高组织的氧气代谢率。有时用来治疗冠心病和慢性酒精中毒。
维生素B17。剧毒。有人认为有控制及预防癌症的作用。对氨基苯甲酸。在维生素B族中属于最新发现的维生素之一。在人体内可合成。
肌醇。维生素B族中的一种,和胆碱一样是亲脂肪性的维生素。
维生素C。连接骨骼、牙齿、结缔组织结构;对毛细血管壁的各个细胞间有粘合功能;增加抗体,增强抵抗力;促进红细胞成熟。
维生素P。
维生素PP(烟酸)。在细胞生理氧化过程中起传递氢作用,具有防治癞皮病的功效。
叶酸(维生素M)。抗贫血;维护细胞的正常生长和免疫系统的功能。
维生素T。帮助血液的凝固和血小板的形成。
维生素U。治疗溃疡上有重要的作用。
人体VA营养状况评定
评定人体内VA营养状况常用指标有:①测定血清VA含量。成人血清VA正常含量为300~900μg视黄醇当量/L,低于120μg为缺乏,但因血清VA含量高低受许多因素影响,故应对具体情况作具体分析;②视觉暗适应功能测定。VA缺乏者暗适应能力比正常人差;③血浆中视黄醇蛋白测定。国外报道其含量与血浆VA含量有正相关趋势。 二、维生素D(VD) <BR> VD是所有具有胆钙化醇生物活性的类固醇统称。其中VD2(钙化醇,calciferol)与VD3(胆钙醇,cholecalciferol)是最重要的VD。VD2与VD3结构相似、功能相同,皆为脂溶性维生素,对热、氧、酸、碱均较稳定,主要区别于两者的来源不同,VD2来源于植物,大多数植物中含有微量的麦角固醇,植物叶曝露于日光后形成VD2(称麦角钙化醇或钙化醇),VD3(又称胆钙固醇或胆钙醇)来源于动物,人与动物皮肤中的7-脱氢胆固醇经紫外线照射后即可转变成VD3,然后运往肝、肾转化为具有生物活性的形式,再发挥其重要生理功能。 <BR> (一)生理功能 <BR> VD对骨骼形成极为重要,其主要功能是调节钙和磷代谢,促进小肠对钙和磷的吸收与利用,构成健全的骨骼与牙齿。 <BR> (二)VD缺乏病 <BR> VD与机体内钙、磷代谢密切相关,故当VD缺乏时,儿童发生佝偻病,成人出现骨软化症和骨质疏松症。佝偻病常在婴幼儿中发生,因骨骼的软骨连接处及骨骼部位增大,临床上可见到方颅、肋骨串珠、鸡胸;由于骨质软化,承受较大压力的骨骼部分发生弯曲变形,如脊柱弯曲,下肢弯曲,还可发生囟门闭合迟缓,胸腹之间形成哈里逊沟。若成人缺乏VD,可使成熟的骨骼脱钙而发生骨质软化症和骨质疏松症,妊娠与授乳期妇女最易发生,好发部位为骨盆与下肢,再逐渐波及到脊柱和其他部位。 <BR> (三)VD过多症 <BR> VD可以在体内蓄积,过多摄入可以引起VD过多症。成人每日摄入2500μg,儿童每日摄入500~1250μg,数周后即可发生中毒。表现为头痛、厌食、恶心、口渴、多尿、低热、嗜睡、血清钙、磷增加,软组织钙化,可出现肾功能衰竭、高血压等症状。停止食用,数周后可恢复正常。 <BR> (四)食物来源 <BR> VD3含量最丰富的食物为鱼肝油,动物肝脏和蛋黄,牛奶与其他食物中VD3的含量较少。VD2来自植物性食品,一般说来,人只要能经常接触阳光,在一般膳食条件下,不会造成VD缺乏。以牛奶为主食的婴儿,应适当补充鱼肝油,并经常接受日光照晒,有利于生长发育。 <BR> (五)供给量 <BR> 成年人每日供应5μg,孕妇、乳母、儿童与青少年及老年人均为10μg。 <BR> (六)营养状况评定 <BR> 目前多用高效液相色谱法测定血浆中的25-OH-D3,作为鉴定VD3营养状况的指标,结果准确可靠。 <BR> 三、维生素E(VE) <BR> VE是所有具有α-生育酚生物活性的色酮衍生物的统称,其中以α-生育酚的活性最高。易溶于脂肪溶剂,对热与酸稳定,对碱敏感,可缓慢地被氧化破坏。 <BR> (一)生理功能 <BR> VE具有很强的抗氧化作用,能阻止不饱和脂肪酸受到过氧化作用的损伤,从而维持着不饱和脂肪酸较多的细胞膜的完整性和正常功能;由于预防了脂质过氧化,从而消除了体内其他成分受到脂质过氧化物的损害。因此,具有延缓衰老、预防大细胞性溶血性贫血作用;还与性器官和胚胎发育有关,动物试验表明,大鼠缺乏VE,将引起雌、雄动物生殖系统的损害,使生殖上皮发生不可逆变化,雄性可致精子停止形成和睾丸退化,雌性可致胚胎死亡。临床上常用来治疗不孕症、习惯性流产。 <BR> (二)食物来源 <BR> 各种植物油(麦胚油、棉籽油、玉米油、花生油、芝麻油)、谷物的胚芽、许多绿色植物、肉、奶油、奶、蛋等都是VE良好或较好的来源。 <BR> (三)供给量 <BR> 儿童为3~8mg,少年与成年人为10mg,孕妇、乳母与老人为12mg。 <BR> (四)营养水平评定 <BR> 1.判定血清中α-生育酚的含量,这是直接反映体内VE储存量是否充足的一个指标,一般认为低于5mg/L为营养状况不良。 <BR> 2.红细胞体外试验,体内缺乏VE者,其体外红细胞对H2O2引起的溶血比正常人敏感。 <BR> 四、维生素B1(VB1) <BR> VB1(硫胺素,thiamine)在高温时,特别是在高温碱性溶液中,非常容易破坏,并易受紫外线破坏,在酸性溶液中,稳定性较好,甚至加热时也是稳定的。 <BR> (一)生理功能 <BR> VB1是脱羧辅酶的主要成分,参与碳水化物代谢中丙酮酸及α-酮戊二酸的氧化脱羧作用;能抑制胆碱脂酶的活性,维持胃肠道的正常蠕动和消化腺的分泌。 <BR> (二)VB1缺乏症 <BR> VB1缺少时,神经组织中的碳水化物代谢首先受到阻碍,致使丙酮酸堆积在神经组织中,引起多发性神经炎和脚气病(beriberi),又称脚气病多见于以大米为主食的地区。在东南亚地区特别是菲律宾、越南、泰国、缅甸等国尤为多见。我国建国后已不多见,但近年来由于生活水平提高,食用精白米增多,在某些地区患病率又有回升。还可因酗酒、各种胃肠道疾病使之吸收过少,结核、甲亢等消耗性疾病使之相对不足而引起发病。 <BR> 由于饮食不足引起者,一般在摄取3个月低VB1饮食后出现症状。早期表现为疲乏无力,肌肉酸痛,食欲下降,体重减轻。继之出现典型的症状:上升性对称性周围神经炎,先发生在下肢,呈袜套状分布;感觉异常、肌肉无力、心动过速、心前区疼痛;严重者表现为心力衰竭,水肿。临床上可分为四型:①干型,以周围神经炎表现为主;②湿型,以水肿和浆液性渗出为主;③暴发型,以急性心血管系统表现为主,同时伴有膈神经和喉返神经瘫痪;④混合型,同时有上述两型以上表现者。 <BR> (三)食物来源 <BR> VB1含量丰富的食物有粮谷类、豆类、干果、酵母、硬壳果类,尤其在粮谷类的表皮部分含量更高,故碾磨精度不宜过度。动物内脏、蛋类及绿叶菜中含量也较高,芹菜叶、莴笋叶中含量也较丰富,应当充分利用。土豆中虽含量不高,但以土豆为主食的地区,也是VB1的主要来源。某些鱼类及软体动物体内,含有硫胺素酶,生吃可以造成其他食物中VB1的损失,故“生吃鱼、活吃虾”的说法,既不卫生,也不科学。 <BR> (四)供给量 <BR> VB1的需要量与机体热能总摄入量成正比,故VB1的供给量以每4.2MJ(1000kcal)热能供给多少来表示,据此,我国的推荐VB1供给量为0.5mg/4.2MJ。 <BR> (五)营养水平评定 <BR> 1.负荷试验 被测者于清晨口服VB15mg,然后收集4小时以内尿液,测定其中VB1含量:<100μg为营养缺乏,100~200μg为不足,>200μg为正常,>400μg为充裕。 <BR> 2.空腹一次尿液中VB1和肌酐含量测定 二者比值<27为不足,27~65为低下,66~129为适宜,≥130为过高。 <BR> 3.红细胞转羟乙醛酶活力测定 这是测定VB1营养状况的特异指标,若TPP(硫胺素焦磷酸酯)效应>16%即表示VB1缺乏。 <BR> 五、维生素B2(VB2) <BR> VB2(核黄素,riboflavin)为橙黄色晶体,280℃熔化并分解,在中性和酸溶液中对热稳定,在碱性条件下易分解破坏。游离VB2对光敏感,特别是紫外光。 <BR> (一)生理功能 <BR> VB2是机体各种黄素酶的辅酶部分,在生物氧化过程中广泛地起着递氢作用;参与机体内三大生热营养素的代谢过程,与热能代谢直接相关。 <BR> (二)VB2缺乏症(riboflavin deficiency) <BR> 机体缺乏VB2则出现能量和物质代谢的紊乱,表现在外生殖器、舌、唇、口角的综合征。据我国两次营养调查显示,居民平均摄入量只有供给量标准的1/2。目前我国人民食用动物性食品较少,易造成VB2缺乏。临床表现为:①口角炎;②唇炎;③舌炎;④睑缘炎;⑤阴囊炎;⑥脂溢性皮炎。 <BR> (三)食物来源 <BR> 动物性食物含VB2较多,尤以肝、心、肾中丰富,奶、蛋类食品中含量也不少;植物性食品除绿色蔬菜和豆类外一般含量都不高。 <BR> (四)供给量 <BR> 与VB1相同,0.5mg/4.2MJ。 <BR> (五)营养水平评定 <BR> 1.测定细胞中VB2含量 这是评定VB2营养水平的良好指标,含量<140μg/L为缺乏,>200μg/L为良好。 <BR> 2.负荷试验 口服5mgVB2后,4小时尿液中排出VB2量<350μg为不足。 <BR> 3.VB2肌酐比值(μg/g)<27为不足,27~79为低下,80~269为适宜,>270为充裕。 <BR> 4.谷胱甘肽还原酶活性测定 酶还原活性系数(AC)>1.2表示组织中VB2不足。 <BR> 六、尼克酸(VPP) <BR> 尼克酸(nicotinic acid)亦称烟酸,在生物组织中,尼克酰胺是主要的存在形式,它是尼克酸(VPP)具有生物活性的衍生物,可以水解为VPP,两者均为溶于水的较稳定的白色结晶,一般将VPP称为抗癞皮病维生素,VPP在普通烹调温度中非常稳定,在酸性或碱性溶液中也不会有很多损失。 <BR> (一)生理功能 <BR> VPP是构成辅酶I和辅酶Ⅱ的重要成分,二者均为脱氢酶的辅酶,在生物氧化过程中,起到传递氢原子的作用,如果没有VPP,人体就不能利用碳水化物、脂肪和蛋白质来产生能量,也无法合成蛋白质和脂肪;对维持皮肤、神经和消化系统正常功能起着重要作用;还有扩张血管作用。 <BR> (二)VPP缺乏病(又称癞皮病,糙皮病) <BR> VPP缺乏病(pellagra)多发生在以玉米为主食的地区,过去,相当一段时间内新疆南部居民以玉米为主食,又无加碱食用的习惯,副食品供应不足,故发生过癞皮病流行,部分地区居民患病率高达50%。经长期防治,加之生活水平的提高,目前此病已基本得到控制。 <BR> 其典型症状为皮炎(dermatitis)、腹泻(diarrhea)及痴呆(demantia)即所谓“三D”症。早期常有食欲不振、消化不良、腹泻、失眠、头痛、无力、体重减轻等现象。继之于皮肤裸露部位出现对称性皮炎,红、痒、皮肤呈暗褐色,有色素沉着,皮肤粗糙,有明显浮肿,可伴有疱疹、溃疡与感染。消化道与舌部也有炎症,舌呈猩红色,有溃疡,出现恶心、呕吐、腹泻等症状。神经系统除早期症状外,还有肌肉震颤,腱反射过敏或消失,可有烦躁、焦虑、抑郁、健忘、少数病人可有精神失常。其他症状有女性阴道炎、月经不调、男性排尿时有烧灼感、性欲减退等。 <BR> (三)食物来源 <BR> 富含VPP的食物为动物肝脏、酵母、花生、全谷、豆类及肉类含量较高;玉米中VPP含量不算少,但为结合型的,不能直接被人体吸收利用。因此,为了预防癞皮病,应用碱处理玉米(如墨西哥用石灰处理玉米,我国新疆在防治癞皮病过程中推广玉米加碱食用)可释放出大量游离型VPP,在预防癞皮病中收到了良好的效果。同时应当在膳食中增加豆类、大米和小麦粉的比例,降低玉米的摄入量。 <BR> 另外,体内所需的VPP一部分可由色氨酸转换而来,约60mg色氨酸可转换为1mgVPP。 <BR> (四)供给量 <BR> 不仅与热能需要量成正比,而且为VB1、VB2供给量的10倍,推荐供给量为5mg/4.2MJ。 <BR> (五)营养水平评定 <BR> 1.测定VPP代谢产物排出量 从尿中排出的形式主要为N’-甲基尼克酰胺(N’-Me)和2-吡啶酮-甲基尼克酰胺(2-吡啶酮),二者排出的总量>5mg为正常,若N’-Me为0.5~0.8mg,2-吡啶酮<1mg为缺乏,并很快出现临床症状。国外用2-吡啶酮/N’ ?CMe比值来评定VPP的营养水平,比值>1.3为正常,<1为缺乏。 <BR> 2.给受检者以标准膳食,此膳食提供VPP10mg和色氨酸1000mg,收集24小时尿液,测定尿中N’-Me和2-吡啶酮含量,营养水平较好者两种代谢产物的总量为7.0~37mg,癞皮病患者其总量<3mg。 <BR> 七、维生素C(抗坏血酸,VC) <BR> VC(ascorbic acid)为一种酸性多羟化合物,易溶于水,在干燥及无光线条件下比较稳定。很容易被氧化,加热或暴露于空气中、碱性溶液及金属离子(Cu2+,Fe3+)都能加速其氧化。 <BR> (一)生理功能 <BR> 参与体内氧化还原过程,维持组织细胞的正常能量代谢和调节细胞内氧化还原电位;促进体内胶原合成;将血浆运铁蛋白中三价铁还原为二价铁,促进铁的吸收;增加机体的抗病能力,促进伤口愈合;阻断亚硝胺在体内形成,具有防癌和抗癌作用;大量VC还可促进心肌利用葡萄糖和心肌糖原的合成。 <BR> (二)VC缺乏病 <BR> 人类缺乏VC可引起坏血病,表现为毛细血管脆性增加,牙龈肿胀与出血,牙齿松动、脱落、皮肤出现瘀血点与瘀斑,关节出血可形成血肿,鼻衄,便血,月经过多。还能影响骨骼正常钙化,出现伤口愈合不良,抵抗力低下,肿瘤扩散等。我国北方地区新鲜水果蔬菜比南方少,故VC缺乏病较之南方更为多见。

㈥ 维他命都有什么效用

参考资料:
维生素怎样发挥作用
如果我们把人类的身体设想为汽车的引擎,维生素就有如活塞一样。这种惊人的物质在食物中含量甚微,对人体具有什么作用呢?
● 维生素经由酶系统使人体的代谢正常化。只要欠缺一种维生素,就可能危及全身。
维生素是人体酶系统的构成要素。这个酶系统就有如活塞的点火装置一样--调整身体的状况,使各部分有效的运作,促进人体的正常代谢,使全身正常化。
若与蛋白质、脂肪、碳水化合物等其他营养素比较的话,维生素的摄取量(即便是因治疗的目的而大量摄取也一样)是非常微小的。但是只要欠缺任何一种维生素,便可能会导致全身陷入危险的状态。

维生素
维生素(vitamin)是维持人体正常物质代谢和某些特殊生理功能不可缺少的低分子有机化合物,主要参与各种酶的组成,因其结构和理化性质不同,使其各具特殊的生理功能。它们不是构成机体组织的原料,也不能为机体提供热能,只需少量即能满足机体的生理需要。人体不能合成维生素,每日必须自食物中获取。它们都是以本体形式或可被机体利用的前体形式存在于天然的食物中。
造成维生素缺乏的主要原因有:①膳食中含量不足。可因贫困、膳食单调、偏食等使摄入膳食中维生素的量不能满足机体的需求;②体内吸收障碍。如肠蠕动加快,吸收面积减少,长期腹泻等使维生素的吸收、储存减少;③排出增多。可因授乳、大量出汗、长期大量使用利尿剂等使之排出增多;④因药物等作用使维生素在体内加速破坏;⑤生理和病理需要量增多;⑥食物加工烹调不合理使维生素大量破坏或丢失。
预防维生素缺乏的措施:①提供平衡膳食;②根据人体的生理、病理情况及时调整维生素供给量;③及时治疗影响维生素吸收的肠道疾病;④食物加工烹调要合理,尽量减少维生素的损失。
维生素种类很多,根据其溶解性可分为两大类,即脂溶性维生素和水溶性维生素。脂溶性维生素包括A、D、E、K四种,在食物中与脂类共同存在,在肠道吸收时也与脂类吸收有关,排泄效率低,故摄入过多时,可在体内蓄积,产生有害作用,甚至发生中毒。水溶性维生素包括B族维生素(B1、B2、B6、B12、PP等)的抗坏血酸(VC)。水溶性维生素的特点:①溶于水,不溶于脂肪及有机溶剂;②容易从尿中排出体外,且排出效率高,故大量食入一般不会产生蓄积和毒害作用;③绝大多数以辅酶或辅基形式参加各种酶系统工作,在中间代谢的许多环节中都起着极重要的作用;④其体内营养水平多数都可在血液和尿中反映出来。
一、维生素A(VA)和维生素A原(类胡萝卜素)
维生素A(retinol)又名视黄醇,与类胡萝卜素一样对热、酸、碱稳定,一般加工防烹调方法不会引起破坏,但易被氧化,高温与紫外线可促进这种氧化破坏,若与磷脂、VE和VC及其他抗氧化剂并存则较为稳定。
(一)生理功能
1.参与视网膜视紫质的合成与再生,维持正常暗适应能力,维持正常视觉。
2.参与上皮细胞与粘膜细胞中糖蛋白的生物合成,维持上皮细胞的正常结构和功能。
3.促进蛋白质的生物合成和骨细胞的分化,促进机体的生长和骨骼的发育。
4.免疫球蛋白也是糖蛋白,其合成与VA有关,故有增加机体抗感染的作用。
5.VA可促进上皮细胞的正常分化并控制其恶变,从而有防癌作用。
(二)VA缺乏病
由于VA和VA原摄入不足所引起的营养缺乏病,临床上首先出现暗适应能力降低,进一步发展可形成夜盲症。皮肤基底细胞增生和过度角化,特别是毛囊口角化为毛囊丘疹(多发生在四肢伸肌表面、肩部、颈部、背部,臀部的毛囊周围);汗腺、皮脂腺萎缩、皮肤干燥、毛发干枯脱落;结膜角化、泪腺分泌减少,形成干眼病,进一步发展可出现角膜消溃疡、穿孔、失明、还可出现结膜皱折和毕脱斑;骨骼发育受阻、免疫和生殖功能下降。据WHO报道,因VA缺乏,全世界每年有50万名学龄前儿童患有活动性角膜溃疡,600万人患干眼症,这是影响视力和导致失明的重要原因。
我国人民膳食中动物性食品摄入少,主要由蔬菜中摄取β-胡萝卜素(β-carotene)故轻度VA缺乏还是相当广泛的,应当加强防制工作。
(三)VA过多症
VA进入机体后排泄效率不高,长期过量摄入可在体内蓄积,引起VA过多症。成年人长期每天摄入15000μg视黄醇当量,即可出现中毒症状,多数因过量摄入VA制剂或食入过冬狗或狼的肝脏所致。主要症状为厌食、过度激惹、长骨末端外周疼痛、肢体活动受限、头发稀疏、肝肿大、肌肉僵硬、皮肤搔痒、头痛、头晕等。及时停止食用,症状可很快消失。
成人一次摄入VA99000~33000μg视黄醇当量,儿童一次超过99000μg视黄醇当量,可发生VA急性中毒。成人于6~8小时后出现嗜睡或过度兴奋、头痛、呕吐、颅内压增高,12~30小时后皮肤红肿变厚,继之脱皮(以手、脚掌最为明显);婴幼儿急性中毒以颅内压增高为其主要特征,出现前囱饱满、恶心、呕吐、眼底水肿,脑脊液压力增高,血清VA含量剧增。
(四)食物来源
天然VA只存在于动物体内。动物的肝脏、鱼肝油、奶类、蛋类及鱼卵是VA的最好来源。VA原(VA的前体)类胡萝卜素,广泛分布于植物性食品中,其中最重要的是β-胡萝卜素。红色、橙色、深绿色植物性食物中含有丰富的β-胡萝卜素,如胡萝卜、红心甜薯、菠菜、苋菜、杏、芒果等。理论上1molβ-胡萝卜素在体内可分解成2molVA,但由于胡萝卜素有吸收利用率远低于VA,实验证明,就其生理活性而言,6μgβ-胡萝卜素才能相当于1μgVA。β-胡萝卜素是我国人民膳食中VA的主要来源。
(五)供给量
婴幼儿与儿童的不同年龄段,供给量有所不同(200~750μg视黄醇当量),从13岁少年开始至成年老年皆为800μg视黄醇当量。孕妇1000μg,乳母1200μg视黄醇当量。
1μg胡萝卜素=0.167μg视黄醇当量。以往VA的量常用国际单位(IU)表示。1 IUVA=0.33μgVA=0.33μg视黄醇当量。
当从膳食中既摄入VA又食入β-胡萝卜素时,应全部折合成μg视黄醇当量,即:
视黄醇当量(μg)=VA(μg)+0.167×β-胡萝卜素(μg)。
(六)人体VA营养状况评定
评定人体内VA营养状况常用指标有:①测定血清VA含量。成人血清VA正常含量为300~900μg视黄醇当量/L,低于120μg为缺乏,但因血清VA含量高低受许多因素影响,故应对具体情况作具体分析;②视觉暗适应功能测定。VA缺乏者暗适应能力比正常人差;③血浆中视黄醇蛋白测定。国外报道其含量与血浆VA含量有正相关趋势。
二、维生素D(VD)
VD是所有具有胆钙化醇生物活性的类固醇统称。其中VD2(钙化醇,calciferol)与VD3(胆钙醇,cholecalciferol)是最重要的VD。VD2与VD3结构相似、功能相同,皆为脂溶性维生素,对热、氧、酸、碱均较稳定,主要区别于两者的来源不同,VD2来源于植物,大多数植物中含有微量的麦角固醇,植物叶曝露于日光后形成VD2(称麦角钙化醇或钙化醇),VD3(又称胆钙固醇或胆钙醇)来源于动物,人与动物皮肤中的7-脱氢胆固醇经紫外线照射后即可转变成VD3,然后运往肝、肾转化为具有生物活性的形式,再发挥其重要生理功能。
(一)生理功能
VD对骨骼形成极为重要,其主要功能是调节钙和磷代谢,促进小肠对钙和磷的吸收与利用,构成健全的骨骼与牙齿。
(二)VD缺乏病
VD与机体内钙、磷代谢密切相关,故当VD缺乏时,儿童发生佝偻病,成人出现骨软化症和骨质疏松症。佝偻病常在婴幼儿中发生,因骨骼的软骨连接处及骨骼部位增大,临床上可见到方颅、肋骨串珠、鸡胸;由于骨质软化,承受较大压力的骨骼部分发生弯曲变形,如脊柱弯曲,下肢弯曲,还可发生囟门闭合迟缓,胸腹之间形成哈里逊沟。若成人缺乏VD,可使成熟的骨骼脱钙而发生骨质软化症和骨质疏松症,妊娠与授乳期妇女最易发生,好发部位为骨盆与下肢,再逐渐波及到脊柱和其他部位。
(三)VD过多症
VD可以在体内蓄积,过多摄入可以引起VD过多症。成人每日摄入2500μg,儿童每日摄入500~1250μg,数周后即可发生中毒。表现为头痛、厌食、恶心、口渴、多尿、低热、嗜睡、血清钙、磷增加,软组织钙化,可出现肾功能衰竭、高血压等症状。停止食用,数周后可恢复正常。
(四)食物来源
VD3含量最丰富的食物为鱼肝油,动物肝脏和蛋黄,牛奶与其他食物中VD3的含量较少。VD2来自植物性食品,一般说来,人只要能经常接触阳光,在一般膳食条件下,不会造成VD缺乏。以牛奶为主食的婴儿,应适当补充鱼肝油,并经常接受日光照晒,有利于生长发育。
(五)供给量
成年人每日供应5μg,孕妇、乳母、儿童与青少年及老年人均为10μg。
(六)营养状况评定
目前多用高效液相色谱法测定血浆中的25-OH-D3,作为鉴定VD3营养状况的指标,结果准确可靠。
三、维生素E(VE)
VE是所有具有α-生育酚生物活性的色酮衍生物的统称,其中以α-生育酚的活性最高。易溶于脂肪溶剂,对热与酸稳定,对碱敏感,可缓慢地被氧化破坏。
(一)生理功能
VE具有很强的抗氧化作用,能阻止不饱和脂肪酸受到过氧化作用的损伤,从而维持着不饱和脂肪酸较多的细胞膜的完整性和正常功能;由于预防了脂质过氧化,从而消除了体内其他成分受到脂质过氧化物的损害。因此,具有延缓衰老、预防大细胞性溶血性贫血作用;还与性器官和胚胎发育有关,动物试验表明,大鼠缺乏VE,将引起雌、雄动物生殖系统的损害,使生殖上皮发生不可逆变化,雄性可致精子停止形成和睾丸退化,雌性可致胚胎死亡。临床上常用来治疗不孕症、习惯性流产。
(二)食物来源
各种植物油(麦胚油、棉籽油、玉米油、花生油、芝麻油)、谷物的胚芽、许多绿色植物、肉、奶油、奶、蛋等都是VE良好或较好的来源。
(三)供给量
儿童为3~8mg,少年与成年人为10mg,孕妇、乳母与老人为12mg。
(四)营养水平评定
1.判定血清中α-生育酚的含量,这是直接反映体内VE储存量是否充足的一个指标,一般认为低于5mg/L为营养状况不良。
2.红细胞体外试验,体内缺乏VE者,其体外红细胞对H2O2引起的溶血比正常人敏感。
四、维生素B1(VB1)
VB1(硫胺素,thiamine)在高温时,特别是在高温碱性溶液中,非常容易破坏,并易受紫外线破坏,在酸性溶液中,稳定性较好,甚至加热时也是稳定的。
(一)生理功能
VB1是脱羧辅酶的主要成分,参与碳水化物代谢中丙酮酸及α-酮戊二酸的氧化脱羧作用;能抑制胆碱脂酶的活性,维持胃肠道的正常蠕动和消化腺的分泌。
(二)VB1缺乏症
VB1缺少时,神经组织中的碳水化物代谢首先受到阻碍,致使丙酮酸堆积在神经组织中,引起多发性神经炎和脚气病(beriberi),又称脚气病多见于以大米为主食的地区。在东南亚地区特别是菲律宾、越南、泰国、缅甸等国尤为多见。我国建国后已不多见,但近年来由于生活水平提高,食用精白米增多,在某些地区患病率又有回升。还可因酗酒、各种胃肠道疾病使之吸收过少,结核、甲亢等消耗性疾病使之相对不足而引起发病。
由于饮食不足引起者,一般在摄取3个月低VB1饮食后出现症状。早期表现为疲乏无力,肌肉酸痛,食欲下降,体重减轻。继之出现典型的症状:上升性对称性周围神经炎,先发生在下肢,呈袜套状分布;感觉异常、肌肉无力、心动过速、心前区疼痛;严重者表现为心力衰竭,水肿。临床上可分为四型:①干型,以周围神经炎表现为主;②湿型,以水肿和浆液性渗出为主;③暴发型,以急性心血管系统表现为主,同时伴有膈神经和喉返神经瘫痪;④混合型,同时有上述两型以上表现者。
(三)食物来源
VB1含量丰富的食物有粮谷类、豆类、干果、酵母、硬壳果类,尤其在粮谷类的表皮部分含量更高,故碾磨精度不宜过度。动物内脏、蛋类及绿叶菜中含量也较高,芹菜叶、莴笋叶中含量也较丰富,应当充分利用。土豆中虽含量不高,但以土豆为主食的地区,也是VB1的主要来源。某些鱼类及软体动物体内,含有硫胺素酶,生吃可以造成其他食物中VB1的损失,故“生吃鱼、活吃虾”的说法,既不卫生,也不科学。
(四)供给量
VB1的需要量与机体热能总摄入量成正比,故VB1的供给量以每4.2MJ(1000kcal)热能供给多少来表示,据此,我国的推荐VB1供给量为0.5mg/4.2MJ。
(五)营养水平评定
1.负荷试验 被测者于清晨口服VB15mg,然后收集4小时以内尿液,测定其中VB1含量:<100μg为营养缺乏,100~200μg为不足,>200μg为正常,>400μg为充裕。
2.空腹一次尿液中VB1和肌酐含量测定 二者比值<27为不足,27~65为低下,66~129为适宜,≥130为过高。
3.红细胞转羟乙醛酶活力测定 这是测定VB1营养状况的特异指标,若TPP(硫胺素焦磷酸酯)效应>16%即表示VB1缺乏。
五、维生素B2(VB2)
VB2(核黄素,riboflavin)为橙黄色晶体,280℃熔化并分解,在中性和酸溶液中对热稳定,在碱性条件下易分解破坏。游离VB2对光敏感,特别是紫外光。
(一)生理功能
VB2是机体各种黄素酶的辅酶部分,在生物氧化过程中广泛地起着递氢作用;参与机体内三大生热营养素的代谢过程,与热能代谢直接相关。
(二)VB2缺乏症(riboflavin deficiency)
机体缺乏VB2则出现能量和物质代谢的紊乱,表现在外生殖器、舌、唇、口角的综合征。据我国两次营养调查显示,居民平均摄入量只有供给量标准的1/2。目前我国人民食用动物性食品较少,易造成VB2缺乏。临床表现为:①口角炎;②唇炎;③舌炎;④睑缘炎;⑤阴囊炎;⑥脂溢性皮炎。
(三)食物来源
动物性食物含VB2较多,尤以肝、心、肾中丰富,奶、蛋类食品中含量也不少;植物性食品除绿色蔬菜和豆类外一般含量都不高。
(四)供给量
与VB1相同,0.5mg/4.2MJ。
(五)营养水平评定
1.测定细胞中VB2含量 这是评定VB2营养水平的良好指标,含量<140μg/L为缺乏,>200μg/L为良好。
2.负荷试验 口服5mgVB2后,4小时尿液中排出VB2量<350μg为不足。
3.VB2肌酐比值(μg/g)<27为不足,27~79为低下,80~269为适宜,>270为充裕。
4.谷胱甘肽还原酶活性测定 酶还原活性系数(AC)>1.2表示组织中VB2不足。
六、尼克酸(VPP)
尼克酸(nicotinic acid)亦称烟酸,在生物组织中,尼克酰胺是主要的存在形式,它是尼克酸(VPP)具有生物活性的衍生物,可以水解为VPP,两者均为溶于水的较稳定的白色结晶,一般将VPP称为抗癞皮病维生素,VPP在普通烹调温度中非常稳定,在酸性或碱性溶液中也不会有很多损失。
(一)生理功能
VPP是构成辅酶I和辅酶Ⅱ的重要成分,二者均为脱氢酶的辅酶,在生物氧化过程中,起到传递氢原子的作用,如果没有VPP,人体就不能利用碳水化物、脂肪和蛋白质来产生能量,也无法合成蛋白质和脂肪;对维持皮肤、神经和消化系统正常功能起着重要作用;还有扩张血管作用。
(二)VPP缺乏病(又称癞皮病,糙皮病)
VPP缺乏病(pellagra)多发生在以玉米为主食的地区,过去,相当一段时间内新疆南部居民以玉米为主食,又无加碱食用的习惯,副食品供应不足,故发生过癞皮病流行,部分地区居民患病率高达50%。经长期防治,加之生活水平的提高,目前此病已基本得到控制。
其典型症状为皮炎(dermatitis)、腹泻(diarrhea)及痴呆(demantia)即所谓“三D”症。早期常有食欲不振、消化不良、腹泻、失眠、头痛、无力、体重减轻等现象。继之于皮肤裸露部位出现对称性皮炎,红、痒、皮肤呈暗褐色,有色素沉着,皮肤粗糙,有明显浮肿,可伴有疱疹、溃疡与感染。消化道与舌部也有炎症,舌呈猩红色,有溃疡,出现恶心、呕吐、腹泻等症状。神经系统除早期症状外,还有肌肉震颤,腱反射过敏或消失,可有烦躁、焦虑、抑郁、健忘、少数病人可有精神失常。其他症状有女性阴道炎、月经不调、男性排尿时有烧灼感、性欲减退等。
(三)食物来源
富含VPP的食物为动物肝脏、酵母、花生、全谷、豆类及肉类含量较高;玉米中VPP含量不算少,但为结合型的,不能直接被人体吸收利用。因此,为了预防癞皮病,应用碱处理玉米(如墨西哥用石灰处理玉米,我国新疆在防治癞皮病过程中推广玉米加碱食用)可释放出大量游离型VPP,在预防癞皮病中收到了良好的效果。同时应当在膳食中增加豆类、大米和小麦粉的比例,降低玉米的摄入量。
另外,体内所需的VPP一部分可由色氨酸转换而来,约60mg色氨酸可转换为1mgVPP。
(四)供给量
不仅与热能需要量成正比,而且为VB1、VB2供给量的10倍,推荐供给量为5mg/4.2MJ。
(五)营养水平评定
1.测定VPP代谢产物排出量 从尿中排出的形式主要为N’-甲基尼克酰胺(N’-Me)和2-吡啶酮-甲基尼克酰胺(2-吡啶酮),二者排出的总量>5mg为正常,若N’-Me为0.5~0.8mg,2-吡啶酮<1mg为缺乏,并很快出现临床症状。国外用2-吡啶酮/N’ –Me比值来评定VPP的营养水平,比值>1.3为正常,<1为缺乏。
2.给受检者以标准膳食,此膳食提供VPP10mg和色氨酸1000mg,收集24小时尿液,测定尿中N’-Me和2-吡啶酮含量,营养水平较好者两种代谢产物的总量为7.0~37mg,癞皮病患者其总量<3mg。
七、维生素C(抗坏血酸,VC)
VC(ascorbic acid)为一种酸性多羟化合物,易溶于水,在干燥及无光线条件下比较稳定。很容易被氧化,加热或暴露于空气中、碱性溶液及金属离子(Cu2+,Fe3+)都能加速其氧化。
(一)生理功能
参与体内氧化还原过程,维持组织细胞的正常能量代谢和调节细胞内氧化还原电位;促进体内胶原合成;将血浆运铁蛋白中三价铁还原为二价铁,促进铁的吸收;增加机体的抗病能力,促进伤口愈合;阻断亚硝胺在体内形成,具有防癌和抗癌作用;大量VC还可促进心肌利用葡萄糖和心肌糖原的合成。
(二)VC缺乏病
人类缺乏VC可引起坏血病,表现为毛细血管脆性增加,牙龈肿胀与出血,牙齿松动、脱落、皮肤出现瘀血点与瘀斑,关节出血可形成血肿,鼻衄,便血,月经过多。还能影响骨骼正常钙化,出现伤口愈合不良,抵抗力低下,肿瘤扩散等。我国北方地区新鲜水果蔬菜比南方少,故VC缺乏病较之南方更为多见。
(三)食物来源
VC主要来源于新鲜蔬菜和水果,水果中以酸枣、山楂、柑桔、草莓、野蔷薇果、弥猴桃等含量高;蔬菜中以辣椒含量最多,其他蔬菜也含有较多的VC,蔬菜中的叶部比茎部含量高,新叶比老叶高,有光合作用的叶部含量最高。干的豆类及种籽不含VC,但当豆或种籽发芽后则可产生VC。
(四)供给量
从出生至12岁依年龄不同为30~50mg,少年、成年、老年皆为60mg,孕妇80mg,乳母100mg。
(五)营养水平评定
1.负荷试验 口服500mgVC后,4小时尿液中排出量>3mg为正常,1~3mg为不足,<1mg为缺乏。

㈦ 男性摄入VD3有什么效果啊

据调查,男性摄入维生素D 400 IU/d 可大幅降低多种癌症的几率。
zx198612

㈧ 男性摄入VD3有什么效果啊

据调查,男性摄入维生素D 400 IU/d 可大幅降低多种癌症的几率C

㈨ 主动式PFC电脑电源如何降低PF值。

电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S

功率因数越高,电源电压与负荷电流间的相位差就越小。'

功率因数校正电路(PFC)工作原理及应用

功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。PFC是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。

线路功率因数降低的原因及危害导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。

功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF即为COSΦ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿

PFC方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。

长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图l所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF与电流总谐波失真(度)THD之间存在下面关系:

实测表明,对于未采取PFC措施的电子镇流器,仅三次谐波就达60%(以基波为100%),THD会超过电流基波,PF不超过0.6。线路功率因数过低和电流谐波含量过高,不仅会对造成电能巨大浪费,而且会对电力系统产生严重污染,影响到整个电力系统的电气环境,包括电力系统本身和广大用户。因此,IEC1000-3-2《家用电器及类似类电气设备发出的谐波电流**》和IEC929(GB/T15144)《管形荧光灯交流电子镇流器的性能要求》等标准,都对AC线路电流谐波作出了具体的**要求

为提高线路功率因数,抑制电流波形失真,必须采用PFC措施。PFC分无源和有源两种类型,目前流行的是有源PFC技术。

1 无源PFC电路

无源PFC电路不使用晶体管等有源器件,而是由二极管、电阻、电容和电感等无源元件组成。无源PFC电路有很多类型,其中比较简单的无源PFC电路由三只二极管和两只电容组成,如图2所示。这种无源PFC电路的工作原理是:当50Hz的AC线路电压按正弦规律由0向峰值Vm变化的1/4周期内(即在0<t≤5ms期间),桥式整流器中二极管VD2和VD3导通(VD1和VD4截止),电流对电容C1并经二极管VD6对C2充电。当VAC,瞬时值达到Vm,因C1=C2,故C1和C2上的电压相同,均为1/2Vm,当AC线路电压从峰值开始下降时,电容C1通过负载和二极管VD5迅速放电,并且下降速率比AC电压按正弦规律下降快得多,故直到AC电压瞬时值达到1/2Vm之前,VD2和VD3一直导通。当瞬时AC电压幅值小于1/2Vm时,电容C2通过VD7和负载放电。当AC输入电压瞬时值低于无源PFC电路的DC总线电压时,VD2和VD3截止,AC电流不能通过整流二极管,于是IAC出现死区。在AC电压的负半周开始后的一段时间内,VD1和VD4不会马上导通。只有在AC瞬时电压高于桥式整流输出端的DC电压时,VD1和VD4才能因正向偏置而导通。 一旦VD1和VD4导通,C1和C2再次被充电,于是出现与正半周类似的情况,得到图3所示的AC线路输入电压VAC和电流IAC波形。

从图3可以看出,采用无源PFC电路取代单只电容滤波,整流二极管导通角明显增大(大于120°),AC输入电流波形会变得平滑一些。在选择C1=C2=10µF/400V的情况下,线路功率因数可达0.92~0.94,三次电流谐波仅约12%,五次谐波约18%,总谐波失真THD约28~30%。但是,这种低成本的无源PFC电路的DC输出电压纹波较大,质量较差,数值偏低(仅约240V),电流谐波成份并不能完全达到低畸变要求。当其应用于电子镇流器时,因其DC输出电压脉动系数偏大,灯电流波峰比达2以上,超出1.7的**要求。欲提高无源PFC的效果,电路则变得复杂,人们理所当然地会选择有源PFC方案。

有源PFC升压变换器

有源PFC电路相当复杂,但半导体技术的发展为该技术的应用奠定了基础。基于功率因数控制IC的有源PFC电路组成一个DC-DC升压变换器,这种PFC升压变换器被置于桥式整流器和一只高压输出电容之间,也称作有源PFC预调节器。有源PFC变换器后面跟随电子镇流器的半桥逆变器或开关电源的DC-DC变换器。有源PFC变换器之所以几乎全部采用升压型式,主要是在输出功率一定时有较小的输出电流,从而可减小输出电容器的容量和体积,同时也可减小升压电感元件的绕组线径。

PFC变换器有不同的分类方法。按通过升压电感元件电流的控制方式来分,主要有连续导通模式(CCM)、不连续导通模式(DCM)及介于CCM与DCM之间的临界或过渡导通模式(TCM)三种类型。不论是哪一种类型的PFC升压变换器,都要求其DC输出电压高于最高AC线路电压的峰值。在通用线路输入下,最高AC线路电压往往达270V,故PFC变换器输出DC电压至少是380V(270V√2V),通常都设置在400V的电平上。

工作在CCM的PFC变换器,输出功率达500W以上乃至3kW,在DCM工作的PFC变换器,输出功率大多在60~250W,应用比较广泛,故在此作重点介绍。

工作于DCM的有源PFC升压变换器控制IC有几十种型号,如ST公司生产的L6560、西门子公司生产的TDA4817/TDA4862、摩托罗拉公司生产的MC33261/MC34261、三星公司生产的KA7524/KA7526、硅通公司生产的SG3561等。其中,L6560、KA7524/KA7526和MC33261等,在国内直接可以采购,应用比较广泛。这些器件全部采用8引脚DIP或SO封装,芯片电路组成大同小异,其基本组成包括以电压误差放大器为中心的电压控制环路和以一象限乘法器、电流感测比较器及零电流检测器等构成的电流控制环路。图4示出了DCM升压型PFC控制IC的内部结构及由其组成的预变换器电路。

这种PFC升压变换器的工作原理如下:当接通AC线路后,由于电容C1容值仅为0.1~0.22 µ F,只用作高频旁路,故桥式整流输出为100Hz的正弦半波脉动电压(VR),亦即AC半正矢。通过电阻R3的电流对电容C3充电,当C3上的电压升至IC的启动门限(大多为11V左右)以上时,接通IC电源电压(VCC),IC开始工作,并驱动PFC开关VT1动作。一旦PFC升压变换器进入正常运行状态,升压电感器T1的次级绕组则感生高频脉冲信号,经二极管VD5整流和电容C3滤波,为IC提供工作电压和电流。桥式整流后的AC输入电压,经R1和R2组成的电阻分压器分压,作为乘法器的一个输入(VM1)。升压变换器的DC输出电压,在电阻分压器下部电阻R9上的分压信号,反馈到IC误差放大器的反相输入端,并与误差放大器同相输入端上的参考电压VREF比较,产生一个DC误差电压VEAO,也输入到乘法器。乘法器的输出VMO是两个输入(VM1和VM2)的结果,作为IC电流感测比较器的参考。当IC驱动VT1导通时,升压二极管VD6截止,流过L的电流从0沿斜坡线性增加,并全部通过VT1和地回复。一旦IL在开关周期内达到峰值,VT1上的驱动PWM脉冲变为零电平,VT1截止,电感器L中的储能使VD6导通,通过L的电流IL,沿向下的斜坡下降。一旦IL降为零,L的次级绕组产生一个突变电势被IC的零电流检测器接收,IC产生一个新的输出脉冲驱动VT1再次导通,开始下一个开关周期。IC的电流检测逻辑电路同时受零电流检测器和电流传感比较器的控制,可确保在同一时刻IC只输出一种状态的驱动信号。VT1源极串联电阻R7用作感测流过VT1的电流。只要R7上的感测电压超过电流传感比较器的触发门限电平,PFC开关VT1则截止。当AC线路电压从零按正弦规律变化时,乘法器输出VMO为比较器建立的门限强迫通过L的峰值电流跟踪AC电压的轨迹。在各个开关周期内电感峰值电流形成的包迹波,正比于AC输入电压的瞬时变化,呈正弦波波形。在两个开关周期之间,有一个电流为零的点,但没有死区时间,从而使AC电流通过桥式整流二极管连续流动(二极管的导通角几乎等于180°),整流平均电流即为AC输人电流(为电感峰值电流的1/2),呈正弦波波形,且与AC线路电压趋于同相位,因而线路功率因数几乎为1(通常为0.98~0.995),电流谐波含量符合IEC1000-3-2标准的规定要求。与此同时,由于PFC电压控制环路的作用,PFC变换器输出经提升的稳压DC电压,纹波很大,频率为100Hz,同样为正弦波。其控制原理与开关电源一样,其DC输出电压在90~270V的AC输入电压范围内保持不变。

在DCM下工作的PFC升压变换器相关电压和电流波形如图5所示,图6为AC线路输入电压和电流波形。

事实上,工作于DCM的PFC升压变换器开关频率不是固定的。在AC输入电压从0增大的峰值时,开关频率逐渐降低。在峰值AC电压附近,开关周期最大,而频率最低。在连续模式(CCM)下工作的PFC升压变换器采用固定频率高频PWM电流平均技术。这类变换器的开关占空比是变化的,但开关周期相同。通过升压电感器和PFC开关MOSFET的电流在AC线路电压的半周期之内(即0<t<T/2),任何时刻都不为0,而是时刻跟踪AC电压的变化轨迹,其平均电流(IAC)呈正弦波形,且与AC电压同相位,如图7所示。工作在CCM下的PFC变换器与DCM的变换器相比,有更低的波形畸变。THD降至5%左右。

CCM功率因数控制器IC的代表性产品有UC1854、ML4821,LT1248、LT1249、L4981和NCP1650等,这些IC大多采用16引脚封装,其共同特征之一是内置振荡器。像开关电源用PWM/PFC组合IC(如ML4803和CM6800等)中的PFC电路,全部属于CCM平均电流这一类型.

除DCM和CCM的PFC变换器之外,还有一种变换器工作在过渡模式(TM),代表性控制器有L6561等。L6561内置THD最佳化电路,在误差放大器输出端外部可连接RC补偿网络,提供更低的AC输入电流失真及保护功能。由L6561组成的PFC升压变换器,输出功率达300W。

应用简介

无源PFC电路主要用于40W以下电子镇流器中。由于有源PFC控制IC价格比较便宜,无源PFC电路目前很少被人们采用。

有源PFC预变换器越来越多地被用于荧光灯和高压钠灯及金卤灯电子镇流器、高端AC-DC适配器/充电器和彩电、台式PC、监视器及各种服务器开关电源前端,以符合IEC1000-3-2等标准要求。此外,有源PFC技术还被用于电机调速器等产品中。

图8示出了采用有源PFC升压变换器的2×40W双管荧光灯电子镇流器电路。AC线路输入端L1、C1与C2及C3和C4组成EMI滤波器,PFC控制器KAT7524、磁性元件T1、功率开关VT1、升压二极管VD2及输出电容器C10等,组成有源PFC升压变换器,磁环脉冲变压器T2.功率开关VT3和VT2及R14、C11和双向触发二极管D1AC(DB3)组成的振荡启动电路构成半桥逆变器电路,12、C12和L3、C13组成LC串联谐振(灯启动)电路。由于采用了有源PFC升压变换器电路,电子镇流器在AC线路电压为220V额定条件下,变换器效率达96%,输入线路功率因数PF≥0.993,AC输入电流总谐波失真THD≤10.99%,其中二次谐波为0.51%,三次谐波为9.6%,五次谐波为4.7%,七次谐波为1.46%。电子镇流器AC输入电压总谐波含量为4.23%。

有源PFC升压变换器在开关电源应用中,为减少电路元件数量和印制电路板(PCB)空间,提高功率密度,大多是将PFC控制电路与PWM控制器组合在一起,集成到同一芯片上,从而提高了开关电源的性能价格比,同时也简化了设计。

㈩ 人体缺乏维生素会产生哪些病理表现吃什么调理比较好

缺乏维生素A,会是眼睛干涩,不舒服,暗适应能力变差;缺乏维生素D可使自己的身体钙的吸收不好,容易导致缺钙;缺乏维生素C,容易使牙齿牙龈出血,皮肤缺乏弹性等等症状。
调理的话可以根据你的症状来对应的调理,也可以买纽徕佛的多种维生素调理。

阅读全文

与vd3指标低相关的资料

热点内容
人民币的兑换哪个币最高 浏览:304
再生铜投资 浏览:70
传统外汇海星 浏览:897
期货外汇公司 浏览:388
掌众金额小额贷款 浏览:502
华天科技股票分析 浏览:746
海星股票 浏览:589
3900港元多少人民币多少 浏览:714
帮贷宝贷款靠谱吗 浏览:92
ADx融资 浏览:380
p2p理财图片 浏览:939
国元证券基金托管 浏览:578
今日菜百黄金价格多少钱一克 浏览:29
速卖通外汇申报 浏览:89
人造肉概念股票基金 浏览:745
通达信资金分时净买入指标 浏览:277
北川币理财 浏览:319
df融资 浏览:462
手机版东方财富怎么看北向资金 浏览:26
一元创业投资管理有限公司 浏览:584