导航:首页 > 黄金交易 > 量化交易中使用最多的模型

量化交易中使用最多的模型

发布时间:2020-12-21 15:00:13

㈠ 金瑞鼎盛的量化交易使用的多因子量化模型是什么

通过计算机系统,筛选出符合模型的股票和买卖点。基本原理是采用一系列内的因子作为选股标容准,满足这些因子的股票则被买入,不满足的则卖出。
举一个简单的例子:如果有一批人参加马拉松,想要知道哪些人会跑到平均成绩之上,只需在跑前做一个身体测试即可。那些健康指标(因子)靠前的运动员,获得超越平均成绩的可能性较大!

㈡ 量化交易有哪些重要的模型

您好,

  1. Alpha策略模型
    Alpha策略包含不同类别:

    按照研究内容来分,可分为基本面Alpha(或者叫财务Alpha)和量价Alpha。业内普遍不会将这两种Alpha完全隔离开。但是不同团队会按照其能力、擅长方向以及信仰,在做因子上有所偏向。有的团队喜欢用数据挖掘的方式做量价因子,而有的团队喜欢从基本面财务逻辑的角度出发,精细地筛选财务因子。

    按照是否对冲可以分为两类。全对冲的叫做Alpha策略,不对冲的在市面上常被称作指数增强策略。二者所用模型一样,但后者少了期货的对冲。缺少对冲有坏处也有好处,坏处是这种策略的收益曲线是会有较大的回撤。但好处方面,在大涨的年份,这种策略的表现会特别好;从长期看, 公司可以赚取BETA分红收益, 并且可以吸引看好指数的客户。相比之下而对冲Alpha策略一般在大牛市中会远远跑输指数;此外不对冲的好处是节约资金,对冲的Alpha策略至少要放20~30%的资金在期货端用来做保证金。

    2.CTA策略模型
    关于CTA策略,

    CTA策略的特点是收益风险比相对Alpha来说会较低。但是在行情较好的年份收益可能会很高,尤其是在早期。而且,无论是在编程还是策略上,CTA入门的难度相对来说都是最低的。

请采纳

㈢ 量化交易都有哪些主要的策略模型

研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。

量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。 量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。

㈣ 主流量化平台在量化策略中提供的风险模型一般有哪些

国内的,优矿有提供风险模型的接口,其他的好像没有吧。
优矿风险模型共提供了以版下9个数据接权口:
因子暴露数据
因子收益数据
特质收益数据
风险因子协方差矩阵表(日级别)
风险因子协方差矩阵表(short类型)
风险因子协方差矩阵表(long类型)
特质风险表(day类型)
特质风险表(short类型)
特质风险表(long类型)

㈤ 量化模型是什么意思

量化模型,是把数理统计学应用于科学数据,以使数理统计学构造出来的模型得到经验上的支持,并获得数值结果。这种分析是基于理论与观察的并行发展,而理论与观测又通过适当的推断方法而得以联系。

一个完整的量化模型包括哪些?

近几年,量化投资在国内兴起,但在很多人眼里,量化投资仿佛是一个非常神秘的新事物。而实际上,量化投资的无非就是宽客通过计算机语言,将交易策略布置到一个量化系统中,然后进行回测和实战的过程。量化投资的本质还是投资者的智慧,只是实现过程中运用到计算机这一工具。

宽客们到底是如何系统的构建一个完整的量化模型的?可以肯定的是,宽客跟普通投资者一样,也在观察市场,产生一些普通投资者也会想到的想法,当宽客产生一些想法时,他们会通过计算机去验证他们的想法是否靠谱或者是能否带来收益。而作为普通投资者,实现想法往往是困难的,如同普通投资者在投资或炒股过程中,发现在15分钟K线图,上升趋势中股价跌破MA169后便会进入调整。普通投资者只是感觉,而宽客可以通过编写程序然后在市场的历史数据回测,验证这个想法是否靠谱。

一个简单的想法编写成简单的程序,这明显不能称作为量化模型,但这却是任何一个量化模型的来源,即人的想法。完整的量化模型应当包括:策略模型、风险模型、交易成本模型、投资组合构建模型、执行模型,如下图:

投资组合构建模型:投资组合构建模型在于构建一个能创造最大盈利的投资组合。主要分为:基于规则的投资组合构建模型和基于优化的投资组合构建模型。基于规则的投资组合构建模型主要分三类:相等头寸加权,相等风险加权,信号驱动型加权。其中前两类分别保证了投资组合的每个个股头寸相等和所承担的风险相等。第三类根据信号强度来加权,投资组合中个股与策略模型设定的条件越接近则赋予的权重越大,这是合理决定头寸规模的最佳途径。

执行模型:执行模型是实施量化模型的最后一个环节,如果没有执行模型,那么整个量化模型并没有存在的意义。执行模型中订单执行算法是最关键的,其主要目的是,以尽可能低的价格,尽可能完整地完成想要交易的订单。具体的执行算法包括:采用何种订单类型,采用进取订单还是被动订单,采用大订单还是小订单。对于资金量比较小的宽客,执行模型往往是比较简单的,一旦出现信号,其所需成交量的并不需要太大。而对于资金量较大的宽客来说,执行模型是比较复杂的,需要根据实际情况来选择合适的下单方式。

以上就是量化模型的整个系统框架,其中任何一个部分都发挥至关重要的作用,因此一个完整的能盈利的量化模型是非常有价值的。

㈥ 量化交易都有哪些主要的策略模型

随着量化交易的发展,单一技术指标的策略会面临失效的问题。所以现在的策略都是复合型的。
经典量化交易策略(包括价值投资、技术指标、配对轮动、机器学习等)、研究型文章等

㈦ 量化交易模型的校正重要吗

当然重要来,简单来讲两个方面。源
第一,假设跟踪同一个交易系统的人数足够多,那么对于其中的大部分人而言,要想成交在一个合理的价格区间就会变得十分困难,因为他们总会在要买入的时候发现价格已经被提前抬高了,并在要卖出的时候发现价格开始一泻千里,他们此时的唯一方法就是不断升级已有的配套设施,以争取在第一时间交易。不过,上述假设如今是很难站得住脚的,因为在量化投资领域并不存在着一个普适的交易系统,即使是对于常用的多因子模型而言,选择不同的因子,使用不同的预测方法,甚至是决定在不同的时间节点调仓,都会使最终的投资决策产生一定差异。同时考虑到策略同质性可能带来的负面影响,很多开发者也会不断努力去研发出更独到、有效的投资模型,并对模型高度保密,也进一步保证了量化投资领域的多样性。所以及时校正是保证模型有效性的重要条件。
第二,中国资本市场的特殊性,包括政策市等各种阿尔法因素特别多,理论模型需要在实际使用中再进行各种调整和校正以保证有效性。

㈧ 如何建立一个股票量化交易模型并仿真

研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。

㈨ 量化交易是什么意思

量化交易就是利用数学、统计学、信息技术的量化投资方法来管理投资组版合。简单的讲可权以分为策略构思、建立模型、数据回测、调优再回测、交易跟随这5个步骤。

股票量化投资模型主要分为两大块:风险模型和多因子选股模型,分别用于控制风险和提高收益。风险模型中纳入了行业、市值和风格因子,行业不偏不倚,市值不偏大小,风格兼顾长短期。多因子模型建立在风险模型之上,涵盖七大类筛选因子,覆盖情绪、动量、质量、估值等多类型因子以及大数据投资因子。

的确,要自己做出一个量化策略,肯定需要对一些基本的指标(因子)有清晰的理解,拿你说的基本面来说,比如市盈率(PE)这个因子,PE越高说明股票的估值越高,买入后风险就高;PE越低说明股票估值越被低估,买入后上涨的机会就越大。所以,我们就可以简单的得出一个低PE的量化策略,当然这种单因子策略存在着很大的局限性,真正在做策略的时候我们还需求结合其他的因子,这样做出来的策略的回测结果会更加的理想,实盘的赢率也就更大了。

如果你只是个普通的散户,想在未来的交易中采用量化交易体系,那还是很有必要系统性的学习一下的。

㈩ 如何开发量化投资模型

4.如何进行量化投资
一个量化投资的交易系统主要包括三个部分,阿尔法模型、风险模型和交易成本模型。
阿尔法模型旨在预测宽客所考虑金融产品的未来趋势;
风险模型旨在帮助宽客投资不太能带来收益但会造成损失的敞口规模;
交易成本模型用于帮助确定从目前的投资组合到新的投资组合的交易成本。
目前对于量化交易的研究重点大都集中在对阿尔法模型的研究上。
阿尔法模型
阿尔法模型是量化交易系统的第一个重要组成部分,主要是为了寻找盈利机会。
阿尔法是希腊字母α的音译,常用于量化表述投资者的盈利能力或投资者得到的与市场波动无关的回报。
阿尔法模型分为:
趋势形、回复型、技术情绪型、价值型/收益型、成长型和品质型
趋势型和均值回复型交易策略都依赖价格数据;纯技术情绪型的策略比较少见通常都只作为一个辅助因子;而价值型/收益型、成长型和品质型策略都基于基本面数据
趋势跟随策略
趋势跟随策略是基于以下基本的假定:在一定时间内市场通常朝着同一方向变化,据此对市场趋势做出判断就可以作为制定交易策略的依据。常见于期货市场,最常用移动平均线交叉来定义趋势。
均值回复策略
均值回复策略的基本理论认为,价格围绕其价值中枢而上下波动,判断出这个中枢以及波动的方向便足以捕捉到交易机会。统计套利是用的最多的均值回复策略,认为价格出现背离类似股票的价值终究会缩小到合理的区间范围。
技术情绪型策略
这一类策略没有明确的经济理论支撑,主要通过追踪投资者情绪相关指标来判断预期回报,如交易价格、交易量以及波动性指标等。比如观察期权市场的认沽认购量和隐含波动率做现货的择时,再者就是高频交易通过限价指令簿的形态来判断近期市场情绪。
价值型/收益型策略
价值型策略主要用于股票交易。这类策略认为市场倾向于高估高风险资产的风险,而低估低风险资产的风险。因此,在适当的时间买入高风险资产和卖出低风险资产,就可以获得收益。常用的指标有PE(市盈率)、PB(市净率)等,常应用于股票多空。
成长型策略
成长型策略试图通过对所考虑资产以往的增长水平进而对未来的走势进行预测。他认为价格上涨通常都是存在趋势的,价格上涨最快的产品通常比同类产品更具有优势,他要求投资者能尽早判断公司的股价处于增长期,从而捕捉到公司的股价未来更大的上涨幅度。宏观上常见于外汇市场,例如持有经济迅速增长的国家的外汇,这些国家的利率比经济增长缓慢或处于复苏期的经济体要高;股票市场通常用EPS等指标度量。
品质型策略
这类策略的支持者认为,在其他条件相同的条件下最好买入或持有高品质的产品而做空或减少持有低品质的资产。这类策略比较看重资金的安全,受宏观市场影响比较大,常用的指标有杠杆比率、收入波动比、管理团队水平和欺诈风险。
不管是什么类型的策略最终受益都体现在交易中关于买卖时机的把握和持有头寸选择的技巧。
https://uqer.io/community/list 这个社区里面有很多关于量化的策略,也有很多牛人,可以和他们多讨论讨论的。

阅读全文

与量化交易中使用最多的模型相关的资料

热点内容
模模搭融资 浏览:813
天原管道价格表 浏览:783
适合女生怎么投资理财 浏览:640
基金募集期会提前结束吗 浏览:557
益盟操盘手分时图资金线指标公式 浏览:556
谢克对人民币汇率多少 浏览:354
看看货币基金 浏览:424
安泰丰贵金属投资公司58同城 浏览:162
股票价格还有负的吗 浏览:825
丹麦对人民币汇率计算器 浏览:867
中国农业银行外汇转帐 浏览:214
今天美元对人民币中间汇率是多少钱 浏览:50
南京商厦古今内衣价格多少钱 浏览:1000
黑角现货交易 浏览:730
乐投天下投资 浏览:638
社保基金怎么进了盐湖股份 浏览:567
560002基金发行价 浏览:241
贵金属深加工流程 浏览:395
债券价格表 浏览:309
炒外汇图片 浏览:222