❶ 5篇中國數學家的故事
1910年11月12日,華羅庚生於江蘇省金壇縣。他家境貧窮,決心努力學習。上中學時,在一次數學課上,老師給同學們出了一道著名的難題:「有一個數,3個3個地數,還餘2;5個5個地數,還餘3;7個7個地數,還餘2,請問這個得數是多少?」大家正在思考時,華羅庚站起來說:「23」他的回答使老師驚喜不已,並得到老師的表揚。從此,他喜歡上了數學。
華羅庚上完初中一年級後,因家境貧困而失學了,只好替父母站櫃台,但他仍然堅持自學數學。經過自己不懈的努力,他的《蘇家駒之代數的五次方程式解法不能成立的理由》論文,被清華大學數學系主任熊慶來教授發現,邀請他來清華大學;華羅庚被聘為大學教師,這在清華大學的歷史上是破天荒的事情。
1936年夏,已經是傑出數學家的華羅庚,作為訪問學者在英國劍橋大學工作兩年。而此時抗日的消息傳遍英國,他懷著強烈的愛國熱忱,風塵僕僕地回到祖國,為西南聯合大學講課。
華羅庚十分注意數學方法在工農業生產中的直接應用。他經常深入工廠進行指導,進行數學應用普及工作,並編寫了科普讀物。
華羅庚也為青年樹立了自學成才的光輝榜樣,他是一位自學成才、沒有大學畢業文憑的數學家。他說:「不怕困難,刻苦學習,是我學好數學最主要的經驗」,「所謂天才就是靠堅持不斷的努力
❷ 數學家的故事~~~急急急~~~
陳景潤不愛玩公園,不愛逛馬路,就愛學習。學習起來,常常忘記了吃飯睡覺。
有一天,陳景潤吃中飯的時候,摸摸腦袋,哎呀,頭發太長了,應該快去理一理,要不,人家看見了,還當他是個姑娘呢。於是,他放下飯碗,就跑到理發店去了。
理發店裡人很多,大家挨著次序理發。陳景潤拿的牌子是三十八號的小牌子。他想:輪到我還早著哩。時間是多麼寶貴啊,我可不能白白浪費掉。他趕忙走出理發店,找了個安靜的地方坐下來,然後從口袋裡掏出個小本子,背起外文生字來。他背了一會,忽然想起上午讀外文的時候,有個地方沒看懂。不懂的東西,一定要把它弄懂,這是陳景潤的脾氣。他看了看手錶,才十二點半。他想:先到圖書館去查一查,再回來理發還來得及,站起來就走了。誰知道,他走了不多久,就輪到他理發了。理發員叔叔大聲地叫:「三十八號!誰是三十八號?快來理發!」你想想,陳景潤正在圖書館里看書,他能聽見理發員叔叔喊三十八號嗎?
過了好些時間,陳景潤在圖書館里,把不懂的東西弄懂了,這才高高興興地往理發店走去。可是他路過外文閱覽室,有各式各樣的新書,可好看啦。又跑進去看起書來了,一直看到太陽下山了,他才想起理發的事兒來。他一摸口袋,那張三十八號的小牌子還好好地躺著哩。但是他來到理發店還有啥用呢,這個號碼早已過時了。
陳景潤進了圖書館,真好比掉進了蜜糖罐,怎麼也捨不得離開。可不,又有一天,陳景潤吃了早飯,帶上兩個饅頭,一塊鹹菜,到圖書館去了。
陳景潤在圖書館里,找到了一個最安靜的地方,認認真真地看起書來。他一直看到中午,覺得肚子有點餓了,就從口袋裡掏出一隻饅頭來,一面啃著,一面還在看書。
「丁零零……」下班的鈴聲響了,管理員大聲地喊:「下班了,請大家離開圖書館!」人家都走了,可是陳景潤根本沒聽見,還是一個勁地在看書吶。
管理員以為大家都離開圖書館了,就把圖書館的大門鎖上,回家去了。
時間悄悄地過去,天漸漸地黑下來。陳景潤朝窗外一看,心裡說:今天的天氣真怪!一會兒陽光燦爛,一會兒天又陰啦。他拉了一下電燈的開關線,又坐下來看書。看著看著,忽然,他站了起來。原來,他看了一天書,開竅了。現在,他要趕回宿捨去,把昨天沒做完的那道題目,繼續做下去。
陳景潤把書收拾好,就往外走去。圖書館里靜悄悄的,沒有一點兒聲音。哎,管理員上哪兒去了呢?來看書的人怎麼一個也沒了呢?陳景潤看了一下手錶,啊,已經是晚上八點多鍾了。他推推大門,大門鎖著;他朝門外大聲喊叫:「請開門!請開門!」可是沒有人回答。
要是在平時,陳景潤就會走回座位,繼續看書,一直看到第二天早上。可是,今天不行啊!他要趕回宿舍,做那道沒有做完的題目呢!
他走到電話機旁邊,給辦公室打電話。可是沒人來接,只有嘟嘟的聲音。他又撥了幾次號碼,還是沒有人來接。怎麼辦呢?這時候,他想起了黨委書記,馬上給黨委書記撥了電話。
「陳景潤?」黨委書記接到電話,感到很奇怪。他問清楚是怎麼一回事,高興得不得了,笑著說:「陳景潤!陳景潤!你辛苦了,你真是個好同志。」
黨委書記馬上派了幾個同志,去找圖書館的管理員。圖書館的大門打開了,陳景潤向管理員說:「對不起!對不起!謝謝,謝謝!」他一邊說一邊跑下樓梯,回到了自己的宿舍。
他打開燈,馬上做起那道題目起來。
❸ 數學家的故事(要簡短,300字以內)急用!!!!
1、華羅庚
華羅庚特別愛動腦,對於一些別人看來司空見慣的事,往往也表現出濃厚的興趣,提出一些似乎希奇的問題。
有一次,他同別人一塊去城郊玩耍,見一座荒墳旁有石人石馬,就問比他大的同伴:「這些石人石馬有多重?」同伴回答說:「這怎麼能知道呢。」華羅庚卻不甘心,沉思片刻,說:「以後總會有方法知道的。」
2、畢達哥拉斯
傳說他是一個非常優秀的教師,他認為每一個都該懂些幾何。有一次他看到一個勤勉的窮人,他想教他學習幾何,因此對此人建議:如果這人能學懂一個定理,那麼他就給他一塊錢幣。
這個人看在錢份上就和他學幾何了,可是過了一個時期,這學生對幾何卻產生了非常大的興趣,反而要求畢達哥拉斯教快一些,並且建議:如果老師多教一個定理,他就給一個錢幣。不需要多少時間,畢達哥拉斯把他以前給那學生的錢全部收回了。
3、歐拉
瑞士數學家歐拉早年曾受過良好的神學教育,成為數學家後在俄國宮廷供職。有一次,俄國女皇邀請法國哲學家狄德羅訪問她的宮廷。狄德羅試圖通過使朝臣改信無神論來證明他是值得被邀請的。女皇厭倦了,她命令歐拉去讓這位哲學家閉嘴。
於是,狄德羅被告知,一個有學問的數學家用代數證明了上帝的存在,要是他想聽的話,這位數學家將當著所有朝臣的面給出這個證明。狄德羅高興地接受了挑戰。第二天,在宮廷上,歐拉朝狄德羅走去,用一種非常肯定的聲調一本正經地說:「先生,,因此上帝存在。請回答!」對狄德羅來說,這聽起來好像有點道理,他困惑得不知說什麼好。
周圍的人報以縱聲大笑,使這個可憐的人覺得受了羞辱。他請求女皇答應他立即返回法國,女皇神態自若地答應了。就這樣,一個偉大的數學家用欺騙的手段「戰勝」了一個偉大的哲學家。
4、高斯
高斯7歲那年開始上學,老師布置了一道題,1+2+3······這樣從1一直加到100等於多少。高斯很快就算出了答案,起初高斯的老師布特納並不相信高斯算出了正確答案:"你一定是算錯了,回去再算算。」高斯非常堅定,說出答案就是5050。
高斯是這樣算的:1+100=101,2+99=101······50+51=101。從1加到100有50組這樣的數,所以50X101=5050。布特納對他刮目相看。
5、阿基米德
國王做了一頂金王冠,他懷疑工匠用銀子偷換了一部分金子,便要阿基米德鑒定它是不是純金制的,且不能損壞王冠。阿基米德捧著這頂王冠整天苦苦思索。阿基米德洗澡,隨著身子浸入浴桶,一部分水就從桶邊溢出,阿基米德看到這個現象,頭腦中像閃過一道閃電,「我找到了!」。
阿基米德拿一塊金塊和一塊重量相等的銀塊,分別放入一個盛滿水的容器中,發現銀塊排出的水多得多。於是阿基米德拿了與王冠重量相等的金塊,放入盛滿水的容器里,測出排出的水量;再把王冠放入盛滿水的容器里,看看排出的水量是否一樣,問題就解決了。
隨著進一步研究,沿用至今的流體力學最重要基石——阿基米德定律誕生了。
❹ 恆越基金管理有限公司怎麼樣
恆越基金管理有限公司是2017-09-14在上海市浦東新區注冊成立的有限責任公司(自然人投資或控股),注冊地址位於上海市浦東新區龍陽路2277號2102室。
恆越基金管理有限公司的統一社會信用代碼/注冊號是91310115MA1K3W828W,企業法人BIGUOQIANG,目前企業處於開業狀態。
恆越基金管理有限公司的經營范圍是:公開募集證券投資基金管理、基金銷售和中國證監會許可的其他業務。[依法須經批準的項目
❺ 中國成立六十周年中中國科學家的故事
祖沖之(公元429年—公元500年)是我國傑出的數學家,科學家。南北朝時期人,漢族人,字文遠。生於宋文帝元嘉六年,卒於齊昏侯永元二年。祖籍范陽郡遒縣(今河北淶水縣)。為避戰亂,祖沖之的祖父祖昌由河北遷至江南。祖昌曾任劉宋的「大匠卿」,掌管土木工程;祖沖之的父親也在朝中做官。祖沖之從小接受家傳的科學知識。青年時進入華林學省,從事學術活動。一生先後任過南徐州(今鎮江市)從事史、公府參軍、婁縣(今崑山市東北)令、謁者僕射、長水校尉等官職。其主要貢獻在數學、天文歷法和機械三方面。在數學方面,他寫了《綴術》一書,被收入著名的《算經十書》中,作為唐代國子監算學課本,可惜後來失傳了。《隋書·律歷志》留下一小段關於圓周率(π)的記載,祖沖之算出π的真值在3.1415926(朒數)和3.1415927(盈數)之間,相當於精確到小數第7位,成為當時世界上最先進的成就。這一紀錄直到15世紀才由阿拉伯數學家卡西打破。祖沖之還給出π的兩個分數形式:22/7(約率)和355/113(密率),其中密率精確到小數第7位,在西方直到16世紀才由荷蘭數學家奧托重新發現。祖沖之還和兒子祖暅一起圓滿地利用「牟合方蓋」解決了球體積的計算問題,得到正確的球體積公式。在天文歷法方面,祖沖之創制了《大明歷》,最早將歲差引進歷法;採用了391年加144個閏月的新閏周;首次精密測出交點月日數(27.21223),回歸年日數(365.2428)等數據,還發明了用圭表測量冬至前後若干天的正午太陽影長以定冬至時刻的方法。在機械學方面,他設計製造過水碓磨、銅制機件傳動的指南車、千里船、定時器等等。此外,他在音律、文學、考據方面也有造詣,他精通音律,擅長下棋,還寫有小說《述異記》。是歷史上少有的博學多才的人物。
為紀念這位偉大的古代科學家,人們將月球背面的一座環形山命名為「祖沖之環形山」,將小行星1888命名為「祖沖之小行星」。
祖沖之通過艱苦的努力,他在世界數學史上第一次將圓周率(π)值計算到小數點後七位,即3.1415926到3.1415927之間。他提出約率22/7和密率355/113,這一密率值是世界上最早提出的,比歐洲早一千多年,所以有人主張叫它「祖率」。他將自己的數學研究成果匯集成一部著作,名為《綴術》,唐朝國學曾經將此書定為數學課本。他編制的《大明歷》,第一次將「歲差」引進歷法。提出在391年中設置144個閏月。推算出一回歸年的長度為365.24281481日,誤差只有50秒左右。他不僅是一位傑出的數學家和天文學家,而且還是一位傑出的機械專家。重新造出早已失傳的指南車、千里船等巧妙機械多種。此外,他對音樂也有研究。著作有《釋論語》、《釋孝經》、《易義》、《老子義》、《莊子義》及小說《述異記》等,均早已遺失。
[編輯本段]【人物生平】
從公元42O年東晉滅亡到589年隋朝統一全國的一百七十年中間,我國歷史上形成了南北對立的局面,這一時期稱作南北朝。南朝從公元42O年東晉大將劉裕奪取帝位,建立宋政權開始,經歷了宋、齊、梁、陳四個朝代。同南朝對峙的是北朝,北朝經歷了北魏、東魏、西魏 在古代,我國歷法家一向把十九年定為計算閏年的單位,稱為「一章」,在每一章里有七個閏年。也就是說,在十九個年頭中,要有七個年頭是十三個月。這種閏法一直採用了一千多年,不過它還不夠周密、精確。公元412年,北涼趙厞創作《元始歷》,才打破了歲章的限制,規定在六百年中間插入二百二十一個閏月。可惜趙厞的改革沒有引起當時人的注意,例如著名歷算家何承天在公元443年製作《元嘉歷》時,還是採用十九年七閏的古法。祖沖之吸取了趙厞的先進理論,加上他自己的觀察,認為十九年七閏的閏數過多,每二百年就要差一天,而趙厞六百年二百二十一闖的閏數卻又嫌稍稀,也不十分精密。因此,他提出了三百九十一年內一百四十四閏的新閏法。這個閏法在當時算是最精密的了。除了改革閏法以外,祖沖之在歷法研究上的另一重大成就,是破天荒第一次應用了「歲差。」根據物理學原理,剛體在旋轉運動時,假如絲毫不受外力的影響,旋轉的方向和速度應該是一致的;如果受了外力影響,它的旋轉速度就要發生周期性的變化。地球就是一個表面凹凸不平、形狀不規則的剛體,在運行時常受其他星球吸引力的影響,因而旋轉的速度總要發生一些周期性的變化,不可能是絕對均勻一致的。因此,每年太陽運行一周(實際上是地球繞太陽運行一周),不可能完全回到上一年的冬至點上,總要相差一個微小距離。按現在天文學家的精確計算,大約每年相差50.2秒,每七十一年八個月向後移一度。這種現象叫作歲差。
隨著天文學的逐漸發展,我國古代科學家們漸漸發現了歲差的現象。西漢的鄧平、東漢的劉歆、賈逵等人都曾觀測出冬至點後移的現象,不過他們都還沒有明確地指出歲差的存在。到東晉初年,天文學家虞喜才開始肯定歲差現象的存在,並且首先主張在歷法中引入歲差。他給歲差提出了第一個數據,算出冬至日
祖沖之繼承了前人的科學研究成果,不但證實了歲差現象的存在,算出歲差是每四十五年十一個月後退一度,而且在他製作的《大明歷》中應用了歲差。因為他所根據的天文史料都還是不夠准確的,所以他提出的數據自然也不可能十分准確。盡管如此,祖沖之把歲差應用到歷法中,在天文歷法史上卻是一個創舉,為我國歷法的改進揭開了新的一頁。。祖沖之在歷法研究方面的第三個巨大貢獻,就是能夠求出歷法中通常稱為「交點月」的日數。所謂交點月,就是月亮連續兩次經過「黃道」和「白道」的交叉點,前後相隔的時間。黃道是指我們在地球上的人看到的太陽運行的軌道,白道是我們在地球上的人看到的月亮運行的軌道。交點月的日數是可以推算得出來的。祖沖之測得的交點月的日數是27.21223日,比過去天文學家測得的要精密得多,同近代天文學家所測得的交點月的日數27.21222日已極為近似。在當時天文學的水平下,祖沖之能得到這樣精密的數字,成績實在驚人。由於日蝕和月蝕都是在黃道和白道交點的附近發生,所以推算出交點月的日數以後,就更能准確地推算出日蝕或月蝕發生的時間。祖沖之在他制訂的《大明歷》中,應用交點月推算出來的日、月蝕時間比過去准確,和實際出現日、月蝕的時間都很接近。祖沖之根據上述的研究成果,終於成功製成了當時最科學、最進步的歷法——《大明歷》。這是祖沖之科學研究的天才結晶,也是他在天文歷法上最卓越的貢獻。圓周定律 著書綴術祖沖之不但精通天文、歷法,他在數學方面的貢獻,特別對「圓周率」研究的傑出成就,更是超越前代,在世界數學史上放射著異彩。我們都知道圓周率就是圓的周長和同一圓的直徑的比,這個比值是一個常數,現在通用希臘字母「π」來表示。圓周率是一個永遠除不盡的無窮小數,它不能用分數、有限小數或循環小數完全准確地表示出來。由於現代數學的進步,已計算出了小數點後兩千多位數字的圓周率。圓周率的應用很廣泛。尤其是在天文、歷法方面,凡牽涉到圓的一切問題,都要使用圓周率來推算。我國古代勞動人民在生產實踐中求得的最早的圓周率值是「 3」,這當然很不精密,但一直被沿用到西漢。後來,隨著天文、數學等科學的發展,研究圓周率的人越來越多了。西漢末年的劉歆首先拋棄「3」這個不精確的圓周率值,他曾經採用過的圓周率是3.547。東漢的張衡也算出圓周率為π=3.1622。這些數值比起π=3當然有了很大的進步,但是還遠遠不夠精密。到了三國末年,數學家劉徽創造了用割圓術來求圓周率的方法,圓周率的研究才獲得了重大的進展。用割圓術來求圓周率的方法,大致是這樣:先作一個圓,再在圓內作一內接正六邊形。假設這圓的直徑是2,那麼半徑就等於1。內接正六邊形的一邊一定等於半徑,所以也等於1;它的周長就等於6。如果把內接正六邊形的周長6當作圓的周長,用直徑2去除,得到周長與直徑的比π=6/2=3,這就是古代π=3的數值。但是這個數值是不正確的,我們可以清楚地看出內接正六邊形的周長遠遠小於圓周的周長。如果我們把內接正六邊形的邊數加倍,改為內接正十二邊形,再用適當方法求出它的周長,那麼我們就可以看出,這個周長比內按正六邊形的周長更接近圓的周長,這個內接正十二邊形的面積也更接近圓面積。從這里就可以得到這樣一個結論:圓內所做的內接正多邊形的邊數越多,它各邊相加的總長度(周長)和圓周周長之間的差額就越小。從理論上來講,如果內接正多邊形的邊數增加到無限多時,那時正多邊形的周界就會同圓周密切重合在一起,從此計算出來的內接無限正多邊形的面積,也就和圓面積相等了。不過事實上,我們不可能把內接正多邊形的邊數增加到無限多,而使這無限正多邊形的周界同圓周重合。只能有限度地增加內接正多邊形的邊數,使它的周界和圓周接近重合。所以用增加圓的內接正多邊形邊數的辦法求圓周率,得數永遠稍小於π的真實數值。劉徽就是根據這個道理,從圓內接正六邊形開始,逐次加倍地增加邊數,一直計算到內接正九十六邊形為止,求得了圓周率是3.14。把這個數化為分數,就是157/50。劉徽所求得的圓周率,後來被稱為「徽率」。他這種計算方法,實際上已具備了近代數學中的極限概念。這是我國古代關於圓周率的研究的一個光輝成就。
祖沖之在推求圓周率方面又獲得了超越前人的重大成就。根據《隋書·律歷志》的記載,祖沖之把一丈化為一億忽,以此為直徑求圓周率。他計算的結果共得到兩個數:一個是盈數(即過剩的近似值),為3.1415927;一個是朒數(即不足的近似值),為3.1415926。圓周率真值正好在盈朒兩數之間。《隋書》只有這樣簡單的記載,沒有具體說明他是用什麼方法計算出來的。不過從當時的數學水平來看,除劉徽的割圓術外,還沒有更好的方法。祖沖之很可能就是採用了這種方法。因為採用劉徽的方法,把圓的內接正多邊形的邊數增多到24576邊時,便恰好可以得出祖沖之所求得的結果。盈朒 兩數可以列成不等式,如:3.1415926(*)<π(真實的圓周率)<3.1415927(盈),這表明圓周率應在盈朒 兩數之間。按照當時計算都用分數的習慣,祖沖之還採用了兩個分數值的圓周率。一個是355/113(約等於3.1415927),這一個數比較精密,所以祖沖之稱它為「密率」。另一個是了(約等於3.14),這一個數比較粗疏,所以祖沖之稱它為「約率」。在歐洲,直到1573年才由德國數學家渥脫求出了355/113這個數值。因此,日本數學家三上義夫曾建議把355/113這個圓周率數值稱為「祖率」,來紀念這位中國的大數學家。由於祖沖之所著的數學專著《綴術》已經失傳,《隋書》又沒有具體地記載他求圓周率的方法,因此,我國研究祖國數學遺產的專家們,對於他求圓周率的方法還有不同的見解。有人認為祖沖之圓周率中的「朒數」。是用作圓的內接正多邊形的方法求得的;而「盈數」則是用作圓的外切正多邊形的方法求得的。祖沖之如果繼續用劉徽的辦法,從圓的內接正六邊形算起,逐次加倍邊數,一直算到內接正24576邊形時,它的各邊長度總和只能逐次接近並較小於圓周的周長,這正多邊形的面積也只能逐次接近並較小於圓面積,從此求出的圓周率為3.14159261,也只能小於圓周率的真實數值,這就是朒 數。從祖沖之的數學水平來看,突破劉徽的方法,從外切正六邊形算起,逐次試求圓周率,也是可能的。如果祖沖之把外切正六邊形的邊數成倍增加,到正24576邊形時,他所求得的圓周率應該是。3.14159270208。這個數是用外切方法求得的。由於外切正多邊形各邊邊長的總和永遠大於圓周的長度,這正多邊形的面積也永遠大於圓面積,所以這個數總比真實的圓周率大。用四捨五入法捨去小數點七位以後的數字,就得出盈數。
祖沖之究竟是否同時用過內接和外切這兩個方法求出圓周率的朒數和盈數,是沒有確切史料可以證實的。但是採用這個辦法所求出的朒、盈兩個數值,和祖沖之原來所求出的結果大體是一致的。所以有些數學史家認為祖沖之曾用過作圓的外切正多邊形的方法求得圓周率,是很近情理的推想。盡管說法有出入,但是祖沖之曾經求得「密率」,並且明確地用上、下兩限來說明圓周率這個數值的范圍,是可以肯定的。在一千五百年前,他有這樣的成就和認識,真值得我們欽佩。在推算圓周率時,祖沖之付出了不知多少辛勤的勞動。如果從正六邊形算起,算到24576邊時,就要把同一運算程序反復進行十二次,而且每一運算程序又包括加減乘除和開方等十多個步驟。我們現在用紙筆算盤來進行這樣的計算,也是極其吃力的。當時祖沖之進行這樣繁難的計算,只能用籌碼(小竹棍)來逐步推演。如果頭腦不是十分冷靜精細,沒有堅韌不拔的毅力,是絕對不會成功的。祖沖之頑強刻苦的研究精神,是很值得推崇的。在我國古代數學著作《九章算術》中,曾列有計算圓球體積的公式,但很不精確。劉徽雖然曾經指出過它的錯誤,但究竟應當怎樣計算,他也沒有求得解決。經祖暅刻苦鑽研,終於找到了正確的計算方法。他所推算出的計算圓球體積的公式是:圓球體積=π/c D(D代表球體直徑)。這個公式一直到今天還被人們採用著。指南車是一種用來指示方向的車子。車中裝有機械,車上裝有木人。車子開行之前,先把木人的手指向南方,不論車子怎樣轉彎,木人的手始終指向南方不變。這種車子結構已經失傳,但是根據文獻記載,可以知道它是利用齒輪互相帶動的結構製成的。相傳遠古時代黃帝對蚩尤作戰,曾經使用過指南車來辨別方向,但這不過是一種傳說。根據歷史文獻記載,三國時代的發明家馬鈞曾經製造過這種指南車,可惜後來失傳了。公元417年東晉大將劉裕(也就是後來宋朝的開國皇帝)進軍至長安時,曾獲得後秦統治者姚興的一輛舊指南車,車子裡面的機械已經散失,車子行走時,只能由人來轉動木人的手,使它指向南方。後來齊高帝蕭道成就令祖沖之仿製。祖沖之所制指南車的內部機件全是銅的。製成後,蕭道成就派大臣王僧虔、劉休兩人去試驗,結果證明它的構造精巧,運轉靈活,無論怎樣轉彎,木人的手常常指向南方祖沖之還根據春秋時代文獻的記載,制了一個「欹器」,送給齊武帝的第二個兒子蕭子良。欹器是古人用來警誡自滿的器具。器內沒有水的時候,是側向一邊的。裡面盛水以後,如果水量適中,它就豎立起來;如果水滿了,它又會倒向一邊,把水潑出去。這種器具,晉朝的學者杜預曾試制三次,都沒有成功;祖沖之卻仿製成功了。由此可見,祖沖之對各種機械都有深刻的研究。祖沖之在天文、歷法、數學以及機械製造等方面的輝煌成就,充分表現了我國古代科學的高度發展水平。祖沖之所以能夠取得這樣輝煌的成就,並不是偶然的。首先,當時社會生產正在逐步發展,需要有一定的科學成就來配合前進,因而就推動了科學的進步,祖沖之就在這時候取得了天文、數學和器械製造等方面的成績。其次,從上古到這時候,在千百年的長時期中,已積累了不少科學成果,祖沖之就在前人創造的基礎上做出了他的成績。至於祖沖之個人的認真學習,刻苦鑽研,不迷信古人,不畏懼守舊勢力,不怕斗爭,不避艱難,自然也都是取得傑出成就的重要原因。
祖沖之不僅是我國歷史上傑出的科學家,而且在世界科學發展史上也有崇高的地位。祖沖之創造「密率」,是世界聞名的。我們應該紀念像祖沖之這樣的科學家,珍視他們的寶貴遺產。在祖沖之之前,人們使用的歷法是天文學家何承天編制的《元嘉歷》。祖沖之經過多年的觀測和推算,發現《元嘉歷》存在很大的差誤。於是祖沖之著手制定新的歷法,宋孝武帝大明六年(公元462年)他編製成了《大明歷》。大明歷在祖沖之生前始終沒能採用,直到梁武帝天監九年(公元510年)才正式頒布施行。《大明歷》的主要成就如下:區分了回歸年和恆星年,首次把歲差引進歷法,測得歲差為45年11月差一度(今測約為70.7年差一度)。歲差的引入是中國歷法史上的重大進步。定一個回歸年為365.24281481日(今測為365.24219878日),直到南宋寧宗慶元五年(公元1199年)楊忠輔制統天歷以前,它一直是最精確的數據。採用391年置144閏的新閏周,比以往歷法採用的19年置7閏的閏周更加精密。定交點月日數為27.21223日(今測為27.21222日)。交點月日數的精確測得使得准確的日月食預報成為可能,祖沖之曾用大明歷推算了從元嘉十三年(公元436年)到大明三年(公元459年),23年間發生的4次月食時間,結果與實際完全符合。得出木星每84年超辰一次的結論,即定木星公轉周期為11.858年(今測為11.862年)。給出了更精確的五星會合周期,其中水星和木星的會合周期也接近現代的數值。求算圓周率的值是數學中一個非常重要也是非常困難的研究課題。中國古代許多數學家都致力於圓周率的計算,而公元5世紀祖沖之所取得的成就可以說是圓周率計算的一個躍進。祖沖之經過刻苦鑽研,繼承和發展了前輩科學家的優秀成果。他對於圓周率的研究,就是他對於我國乃至世界的一個突出貢獻。祖沖之對圓周率數值的精確推算值,用他的名字被命名為「祖沖之圓周率」,簡稱「祖率」。什麼是圓周率呢?圓有它的圓周和圓心,從圓周任意一點到圓心的距離稱為半徑,半徑加倍就是直徑。直徑是一條經過圓心的線段,圓周是一條弧線,弧線是直線的多少倍,在數學上叫做圓周率。簡單說,圓周率就是圓的周長與它直徑之間的比,它是一個常數,用希臘字母「π」來表示,為算式355÷113所得。在天文歷法方面和生產實踐當中,凡是牽涉到圓的一切問題,都要使用圓周率來推算。如何正確地推求圓周率的數值,是世界數學史上的一個重要課題。我在《周髀算經》和《九章算術》中就提出徑一周三的古率,定圓周率為三,即圓周長是直徑長的三倍。此後,經過歷代數學家的相繼探索,推算出的圓周率數值日益精確。西漢末年劉歆在為王莽設計製作圓形銅斛(一種量器)的過程中,發現直徑為一、圓周為三的古率過於粗略,經過進一步的推算,求得圓周率的數值為3.1547。東漢著名科學家張衡推算出的圓周率值為3.162。魏晉之際的著名數學家劉徽在為《九章算術》作注時創立了新的推算圓周率的方法——割圓術。他設圓的半徑為1,把圓周六等分,作圓的內接正六邊形,用勾股定理求出這個內接正六邊形的周長;然後依次作內接十二邊形,二十四邊形……,至圓內接一百九十二邊形時,得出它的邊長和為6.282048,而圓內接正多邊形的邊數越多,它的邊長就越接近圓的實際周長,所以此時圓周率的值為邊長除以2,其近似值為3.14;並且說明這個數值比圓周率實際數值要小一些。在割圓術中,劉徽已經認識到了現代數學中的極限概念。他所創立的割圓術,是探求圓周率數值的過程中的重大突破。後人為紀念劉徽的這一功績,把他求得的圓周率數值稱為「徽率」或稱「徽術」。祖沖之認為自秦漢以至魏晉的數百年中研究圓周率成績最大的學者是劉徽,但並未達到精確的程度,於是他進一步精益鑽研,去探求更精確的數值。它研究和計算的結果,證明圓周率應該在3.1415926和3.1415927之間。他成為世界上第一個把圓周率的准確數值計算到小數點以後七位數字的人。直到一千年後,這個記錄才被阿拉伯數學家阿爾·卡西和法國數學家維葉特所打破。祖沖之提出的「密率」,也是直到一千年以後,才由德國 稱之為「安托尼茲率」,還有別有用心的人說祖沖之圓周率是在明朝末年西方數學傳入中國後偽造的。這是有意的捏造。記載祖沖之對圓周率研究情況的古籍是成書於唐代的史書《隋書》,而現傳的《隋書》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他現傳版本一樣的關於祖沖之圓周率的記載,事在明朝末年前三百餘年。而且還有不少明朝之前的數學家在自己的著作中引用過祖沖之的圓周率,這些事實都證明了祖沖之在圓周率研究方面卓越的成就。那麼,祖沖之是如何取得這樣重大的科學成就呢?可以肯定,他的成就是建立在前人研究的基礎之上的。從當時的數學水平來看,祖沖之很可能是繼承了劉徽所創立和首先使用的割圓術,並且加以發展,因此獲得了超越前人的重大成就。在前面,我們提到割圓術時已經知道了這樣的結論:圓內接正n邊形的邊數越多,各邊長的總和就越接近圓周的實際長度。但因為它是內接的,又不可能把邊數增加到無限多,所以邊長總和永遠小於圓周。祖沖之按照劉徽的割圓術之法,設了一個直徑為一丈的圓,在圓內切割計算。當他切割到圓的內接一百九十二邊形時,得到了「徽率」的數值。但他沒有滿足,繼續切割,作了三百八十四邊形、七百六十八邊形……一直切割到二萬四千五百七十六邊形,依次求出每個內接正多邊形的邊長。最後求得直徑為一丈的圓,它的圓周長度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之間,上面的那些長度單位我們現在已不再通用,但換句話說:如果圓的直徑為1,那麼圓周小於3.1415927、大大不到千萬分之一,它們的提出,大大方便了計算和實際應用。要作出這樣精密的計算,是一項極為細致而艱巨的腦力勞動。我們知道,在祖沖之那個時代,算盤還未出現,人們普遍使用的計算工具叫算籌,它是一根根幾寸長的方形或扁形的小棍子,有竹、木、鐵、玉等各種材料製成。通過對算籌的不同擺法,來表示各種數目,叫做籌演算法。如果計算數字的位數越多,所需要擺放的面積就越大。用算籌來計算不象用筆,筆算可以留在紙上,而籌算每計算完一次就得重新擺動以進行新的計算;只能用筆記下計算結果,而無法得到較為直觀的圖形與算式。因此只要一有差錯,比如算籌被碰偏了或者計算中出現了錯誤,就只能從頭開始。要求得祖沖之圓周率的數值,就需要對九位有效數字的小數進行加、減、乘、除和開方運算等十多個步驟的計算,而每個步驟都要反復進行十幾次,開方運算有50次,最後計算出的數字達到小數點後十六、七位。今天,即使用算盤和紙筆來完成這些計算,也不是一件輕而易舉的事。讓我們想一想,在一千五百多年前的南朝時代,一位中年人在昏暗的油燈下,手中不停地算呀、記呀,還要經常地重新擺放數以萬計的算籌,這是一件多麼艱辛的事情,而且還需要日復一日地重復這種狀態,一個人要是沒有極大的毅力,是絕對完不成這項工作的。這一光輝成就,也充分反映了我國古代數學高度發展的水平。祖沖之,不僅受到中國人民的敬仰,同時也受到世界各國科學界人士的推崇。1960年,蘇聯科學家們在研究了月球背面的照片以後,用世界上一些最有貢獻的科學家的名字,來命名那上面的山谷,其中有一座環形山被命名為「祖沖之環形山」。祖沖之在圓周率方面的研究,有著積極的現實意義,適應了當時生產實踐的需要。他親自研究過度量衡,並用最新的圓周率成果修正古代的量器容積的計算。古代有一種量器叫做「釜」,一般的是一尺深,外形呈圓柱狀,那這種量器的容積有多大呢?要想求出這個數值,就要用到圓周率。祖沖之利用他的研究,求出了精確的數值。他還重新計算了漢朝劉歆所造的「律嘉量」(另一種量器,與上面提到的 都是類似於現在我們所用的「升」等量器,但它們都是圓柱體。),由於劉歆所用的計算方法和圓周率數值都不夠准確,所以他所得到的容積值與實際數值有出入。祖沖之找到他的錯誤所在,利用「祖率」校正了數值。為人們的日常生活提供了方便。以後,人們製造量器時就採用了祖沖之的「祖率」數值。祖沖之在前人的基礎上,經過刻苦鑽研,反復演算,將圓周率推算至小數點後7位數,並得出了圓周率分數形式的近似值。祖沖之究竟用什麼方法得出這一結果,現在無從查考;如果設想他按劉徽的「割圓術」方法去求的話,就要計算到圓內接16000多邊形。祖沖之以一忽(一丈的一億分之一)為單位,求直徑為一丈的圓的周長,求得盈數為3.1415927、肭數為3.1415926,圓周率的真值介於盈肭兩數之間。《隋書》沒有具體說明祖沖之是用什麼方法計算出盈肭兩數的。一般認為,祖沖之採用的是劉徽的割圓術,但也有別的多種猜測。這兩個近似值准確到小數第7位,是當時世界上最先進的成就。直到一千多年以後,15世紀阿拉伯數學家卡西和16世紀法國數學家F.韋達才得到更精確的結果。祖沖之確定了π的兩個漸近分數,約率22/7和密率355/113。其中密率355/113(≈3.1415929)西方直到16世紀才由德國人V.奧托發現。它是三個成對奇數113355再折兩段組成,優美、規整、易記。為了紀念祖沖之的傑出貢獻,有些外國數學史家把圓周率π的密率叫做「祖率」。祖沖之在數學領域的成就,只是中國古代數學成就的一個方面。實際上,14世紀以前中國一直是世界上數學最為發達的國家之一。比如幾何中的勾股定理,在中國早期的數學專著《周髀算經》(大約於公元前2世紀成書)中即有論述;成書於公元1世紀的另一本重要的數學專著《九章算術》,在世界數學史上最早提出負數概念及正負數加減法法則;13世紀時,中國就已經有了十次方程的解法,而直到16世紀,歐洲才提出三次方程的解法。祖沖之還與他的兒子祖暅一起,用巧妙的方法解決了球體體積的計算。他們當時採用的一條原理是:「冪勢既同,則積不容異。」意即:位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等。在西方被稱為「卡瓦列利原理」,但這是在祖沖之以後一千多年才由義大利數學家卡瓦列利(Cavalieri)發現的。為了紀念祖氏父子發現這一原理的重大貢獻,數學上也稱這一原理為「祖暅原理」。
❻ 數學家的故事急!!!!~~~
這個也是陳景潤的,也很有趣!
陳景潤不愛玩公園,不愛逛馬路,就愛學習。學習起來,常常忘記了吃飯睡覺。
有一天,陳景潤吃中飯的時候,摸摸腦袋,哎呀,頭發太長了,應該快去理一理,要不,人家看見了,還當他是個姑娘呢。於是,他放下飯碗,就跑到理發店去了。
理發店裡人很多,大家挨著次序理發。陳景潤拿的牌子是三十八號的小牌子。他想:輪到我還早著哩。時間是多麼寶貴啊,我可不能白白浪費掉。他趕忙走出理發店,找了個安靜的地方坐下來,然後從口袋裡掏出個小本子,背起外文生字來。他背了一會,忽然想起上午讀外文的時候,有個地方沒看懂。不懂的東西,一定要把它弄懂,這是陳景潤的脾氣。他看了看手錶,才十二點半。他想:先到圖書館去查一查,再回來理發還來得及,站起來就走了。誰知道,他走了不多久,就輪到他理發了。理發員叔叔大聲地叫:「三十八號!誰是三十八號?快來理發!」你想想,陳景潤正在圖書館里看書,他能聽見理發員叔叔喊三十八號嗎?
過了好些時間,陳景潤在圖書館里,把不懂的東西弄懂了,這才高高興興地往理發店走去。可是他路過外文閱覽室,有各式各樣的新書,可好看啦。又跑進去看起書來了,一直看到太陽下山了,他才想起理發的事兒來。他一摸口袋,那張三十八號的小牌子還好好地躺著哩。但是他來到理發店還有啥用呢,這個號碼早已過時了。
陳景潤進了圖書館,真好比掉進了蜜糖罐,怎麼也捨不得離開。可不,又有一天,陳景潤吃了早飯,帶上兩個饅頭,一塊鹹菜,到圖書館去了。
陳景潤在圖書館里,找到了一個最安靜的地方,認認真真地看起書來。他一直看到中午,覺得肚子有點餓了,就從口袋裡掏出一隻饅頭來,一面啃著,一面還在看書。
「丁零零……」下班的鈴聲響了,管理員大聲地喊:「下班了,請大家離開圖書館!」人家都走了,可是陳景潤根本沒聽見,還是一個勁地在看書吶。
管理員以為大家都離開圖書館了,就把圖書館的大門鎖上,回家去了。
時間悄悄地過去,天漸漸地黑下來。陳景潤朝窗外一看,心裡說:今天的天氣真怪!一會兒陽光燦爛,一會兒天又陰啦。他拉了一下電燈的開關線,又坐下來看書。看著看著,忽然,他站了起來。原來,他看了一天書,開竅了。現在,他要趕回宿捨去,把昨天沒做完的那道題目,繼續做下去。
陳景潤把書收拾好,就往外走去。圖書館里靜悄悄的,沒有一點兒聲音。哎,管理員上哪兒去了呢?來看書的人怎麼一個也沒了呢?陳景潤看了一下手錶,啊,已經是晚上八點多鍾了。他推推大門,大門鎖著;他朝門外大聲喊叫:「請開門!請開門!」可是沒有人回答。
要是在平時,陳景潤就會走回座位,繼續看書,一直看到第二天早上。可是,今天不行啊!他要趕回宿舍,做那道沒有做完的題目呢!
他走到電話機旁邊,給辦公室打電話。可是沒人來接,只有嘟嘟的聲音。他又撥了幾次號碼,還是沒有人來接。怎麼辦呢?這時候,他想起了黨委書記,馬上給黨委書記撥了電話。
「陳景潤?」黨委書記接到電話,感到很奇怪。他問清楚是怎麼一回事,高興得不得了,笑著說:「陳景潤!陳景潤!你辛苦了,你真是個好同志。」
黨委書記馬上派了幾個同志,去找圖書館的管理員。圖書館的大門打開了,陳景潤向管理員說:「對不起!對不起!謝謝,謝謝!」他一邊說一邊跑下樓梯,回到了自己的宿舍。
他打開燈,馬上做起那道題目起來。
❼ 幫我找兩個數學家的故事。
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。
這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。
二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。
當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。
高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。
1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。
1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。
1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。
1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。
在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。
1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。
1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。
高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。
1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。
高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:
to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。
早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。
陳景潤成了國際知名的大數學家,深受人們的敬重。但他並沒有產生驕傲自滿情緒,而是把功勞都歸於祖國和人民。為了維護祖國的利益,他不惜犧牲個人的名利。
1977年的一天,陳景潤收到一封國外來信,是國際數學家聯合會主席寫給他的,邀請他出席國際數學家大會。這次大會有3000人參加,參加的都是世界上著名的數學家。大會共指定了10位數學家作學術報告,陳景潤就是其中之一。這對一位數學家而言,是極大的榮譽,對提高陳景潤在國際上的知名度大有好處。
陳景潤沒有擅作主張,而是立即向研究所黨支部作了匯報,請求黨的指示。黨支部把這一情況又上報到科學院。科學院的黨組織對這個問題比較慎重,因為當時中國在國際數學家聯合會的席位,一直被台灣占據著。
院領導回答道:「你是數學家,黨組織尊重你個人的意見,你可以自己給他回信。」
陳景潤經過慎重考慮,最後決定放棄這次難得的機會。他在答復國際數學家聯合會主席的信中寫到:「第一,我們國家歷來是重視跟世界各國發展學術交流與友好關系的,我個人非常感謝國際數學家聯合會主席的邀請。第二,世界上只有一個中國,唯一能代表中國廣大人民利益的是中華人民共和國,台灣是中華人民共和國不可分割的一部分。因為目前台灣占據著國際數學家聯合會我國的席位,所以我不能出席。第三,如果中國只有一個代表的話,我是可以考慮參加這次會議的。」為了維護祖國母親的尊嚴,陳景潤犧牲了個人的利益。
1979年,陳景潤應美國普林斯頓高級研究所的邀請,去美國作短期的研究訪問工作。普林斯頓研究所的條件非常好,陳景潤為了充分利用這樣好的條件,擠出一切可以節省的時間,拚命工作,連中午飯也不回住處去吃。有時候外出參加會議,旅館里比較嘈雜,他便躲進衛生間里,繼續進行研究工作。正因為他的刻苦努力,在美國短短的五個月里,除了開會、講學之外,他完成了論文《算術級數中的最小素數》,一下子把最小素數從原來的80推進到16。這一研究成果,也是當時世界上最先進的。
在美國這樣物質比較發達的國度,陳景潤依舊保持著在國內時的節儉作風。他每個月從研究所可獲得2000美金的報酬,可以說是比較豐厚的了。每天中午,他從不去研究所的餐廳就餐,那裡比較講究,他完全可以享受一下的,但他都是吃自己帶去的干糧和水果。他是如此的節儉,以至於在美國生活五個月,除去房租、水電花去1800美元外,伙食費等僅花了700美元。等他回時, 共節余了7500美元。
這筆錢在當時不是個小數目,他完全可以像其他人一樣,從國外買回些高檔家電。但他把這筆錢全部上交給國家。他是怎麼想的呢? 用他自己的話說:「我們的國家還不富裕,我不能只想著自己享樂。」
陳景潤就是這樣一個非常謙虛、正直的人,盡管他已功成名就,然而他沒有驕傲自滿,他說:「在科學的道路上我只是翻過了一個小山包,真正的高峰還沒有有攀上去,還要繼續努力。」