❶ 在經典的投資組合理論中,用收益率的( )來度量風險。 為什麼
C ,yield的sd 即反應了收益率的離散程度,差別越大也代表著收益率的波動越大,也即是風險越大。
❷ 用什麼方法確定投資組合風險度量
風險的度量是以風險的認識為基礎的。本文從風險的基本概念入手回,研究了風險的本答質屬性和特徵;在此基礎之上,釐清了證券投資、證券組合投資、證券組合投資風險的基本概念、本質屬性及其特徵;研究了證券組合風險的分類、表現形式以及風險的來源。在對證券投資組合的風險有了一個清楚的認識之後,本文研究了證券組合收益率的計算;詳細研究了馬克維茲的方差方法、威廉·夏普的β值法、哈洛的半方差方法等各種傳統風險度量方法的概念和具體的計算方法;分析研究了信息熵、重標極差、VaR等各種現代的組合風險度量方法;評價各種方法的優劣並選擇了適合本系統使用的風險評價方法。
❸ 這個投資組合的收益率怎麼計算
(1000*10%+2000*15%+2000*20%)/(1000+2000+2000)*100%=16%
❹ 一般來說,投資組合收益率的計算涉及資產組合已實現的收入和
在投資概念裡面 風險是等同於收益的 如果風險最小化 那得看你自己的風控意識才有可能實現的 也想請教一下 你心裡大概是有什麼樣的投資組合
❺ 投資收益的風險度量
1.期望收益率
它是指投資者持有一種理財產品或投資組合期望在下一個時期所能獲得的收益率。
(1)單一金融資產的期望收益率
(2)投資組合的期望收益率
投資組合的期望收益率就是構成組合的各個資產的期望收益的簡單加權平均數。
2.方差和標准差
方差是指金融資產的收益與其平均收益的離差的平方和的平均數。標准差則是方差的平方根,其在考察金融資產風險時也被廣為使用。
3.協方差和相關系數
投資組合中各種資產之間的收益相互關聯.協方差足一種可用於度量各種金融資產之間收益相互關聯程度的統計指標。另外,還可以使用相關系數這個統計指標來反映投資組合中各種金融資產之間收益的相關性。
(1)協方差的計算
協方差就是投資組合中每種金融資產的可能收益與其期望收益之間的離差之積再乘以相應情況出現的概率後進行相加,所得總和就是該投資組合的協方差。
協方差的計算公式可以分為3個步驟:
1)對應於每一種經濟情況,將兩種資產可能收益與其期望收益之間的離差相乘。
2)對應於每一種經濟情況出現的概率,乘以上一步計算出的離差相乘之積。
3)將第二步計算出的各個乘積加總得到總和。
(2)相關系數的計算
相關系數等於兩種金融資產的協方差除以兩種金融資產的標准差的乘積。
(3)資產組合的方差和標准差
①兩種資產組合的方差和標准差
投資組合的方差取決於組合中各種金融資產的各自的方差以及這兩種金融資產之間的協方差。每種金融資產的方差衡量的是其各自的收益波動程度;協方差則衡量的是構成投資組合的兩種金融資產之間的相互關系。
②多種資產組合的方差和標准差
(4)投資組合多元化的意義
組合中資產種數的增加,特有風險逐漸降低,但是系統性風險卻無法因投資組合中資產種數的增加而降低。
❻ 證券組合投資的收益與風險計算
β系數在證券投資中的應用
06級金融班 冷松
β系數常常用在投資組合的各種模型中,比如馬柯維茨均值-方差模型、夏普單因素模型(Shape Single-Index Model)和多因素模型。具體來說,β系數是評估一種證券系統性風險的工具,用以量度一種證券或一個投資證券組合相對於總體市場的波動性,β系數利用一元線性回歸的方法計算。
(一)基本理論及計算的意義
經典的投資組合理論是在馬柯維茨的均值——方差理論和夏普的資本資產定價模型的基礎之上發展起來的。在馬柯維茨的均值——方差理論當中是用資產收益的概率加權平均值來度量預期收益,用方差來度量預期收益風險的:
E(r)=∑p(ri) ri (1)
σ2=∑P(ri)[ri—E(r)]2 (2)
上述公式中p(ri)表示收益ri的概率,E(r)表示預期收益,σ2表示收益的風險。夏普在此基礎上通過一些假設和數學推導得出了資本資產定價模型(CAPM):
E(ri)=rf +βi [E(rM)—rf] (3)
公式中系數βi 表示資產i的所承擔的市場風險,βi=cov(r i , r M)/var(r M) (4)
CAPM認為在市場預期收益rM 和無風險收益rf 一定的情況下,資產組合的收益與其所分擔的市場風險βi成正比。
CAPM是基於以下假設基礎之上的:
(1)資本市場是完全有效的(The Perfect Market);
(2)所有投資者的投資期限是單周期的;
(3)所有投資者都是根據均值——方差理論來選擇有效率的投資組合;
(4)投資者對資產的報酬概率分布具有一致的期望。
以上四個假設都是對現實的一種抽象,首先來看假設(3),它意味著所有的資產的報酬都服從正態分布,因而也是對稱分布的;投資者只對報酬的均值(Mean)和方差(Variance)感興趣,因而對報酬的偏度(Skewness)不在乎。然而這樣的假定是和實際不相符的!事實上,資產的報酬並不是嚴格的對稱分布,而且風險厭惡型的投資者往往具有對正偏度的偏好。正是因為這些與現實不符的假設,資本資產定價模型自1964年提出以來,就一直處於爭議之中,最為核心的問題是:β系數是否真實正確地反映了資產的風險?
如果投資組合的報酬不是對稱分布,而且投資者具有對偏度的偏好,那麼僅僅是用方差來度量風險是不夠的,在這種情況下β系數就不能公允的反映資產的風險,從而用CAPM模型來對資產定價是不夠理想的,有必要對其進行修正。
β系數是反映單個證券或證券組合相對於證券市場系統風險變動程度的一個重要指標。通過對β系數的計算,投資者可以得出單個證券或證券組合未來將面臨的市場風險狀況。
β系數反映了個股對市場(或大盤)變化的敏感性,也就是個股與大盤的相關性或通俗說的"股性",可根據市場走勢預測選擇不同的β系數的證券從而獲得額外收益,特別適合作波段操作使用。當有很大把握預測到一個大牛市或大盤某個不漲階段的到來時,應該選擇那些高β系數的證券,它將成倍地放大市場收益率,為你帶來高額的收益;相反在一個熊市到來或大盤某個下跌階段到來時,你應該調整投資結構以抵禦市場風險,避免損失,辦法是選擇那些低β系數的證券。為避免非系統風險,可以在相應的市場走勢下選擇那些相同或相近β系數的證券進行投資組合。比如:一支個股β系數為1.3,說明當大盤漲1%時,它可能漲1.3%,反之亦然;但如果一支個股β系數為-1.3%時,說明當大盤漲1%時,它可能跌1.3%,同理,大盤如果跌1%,它有可能漲1.3%。β系數為1,即說明證券的價格與市場一同變動。β系數高於1即證券價格比總體市場更波動。β系數低於1即證券價格的波動性比市場為低。
(二)數據的選取說明
(1)時間段的確定
一般來說對β系數的測定和檢驗應當選取較長歷史時間內的數據,這樣才具有可靠性。但我國股市17年來,也不是所有的數據均可用於分析,因為CAPM的前提要求市場是一個有效市場:要求股票的價格應在時間上線性無關,而2006年之前的數據中,股份的相關性較大,會直接影響到檢驗的精確性。因此,本文中,選取2005年4月到2006年12月作為研究的時間段。從股市的實際來看,2005年4月開始我國股市擺脫了長期下跌的趨勢,開始進入可操作區間,吸引了眾多投資者參與其中,而且人民幣也開始處於上升趨勢。另外,2006年股權分置改革也在進行中,很多上市公司已經完成了股改。所以選取這個時間用於研究的理由是充分的。
(2)市場指數的選擇
目前在上海股市中有上證指數,A股指數,B股指數及各分類指數,本文選擇上證綜合指數作為市場組合指數,並用上證綜合指數的收益率代表市場組合。上證綜合指數是一種價值加權指數,符合CAPM市場組合構造的要求。
(3)股票數據的選取
這里用上海證券交易所(SSE)截止到2006年12月上市的4家A股股票的每月收盤價等數據用於研究。這里遇到的一個問題是個別股票在個別交易日內停牌,為了處理的方便,本文中將這些天該股票的當月收盤價與前一天的收盤價相同。
(4)無風險收益(rf)
在國外的研究中,一般以3個月的短期國債利率作為無風險利率,但是我國目前國債大多數為長期品種,因此無法用國債利率作為無風險利率,所以無風險收益率(rf)以1年期銀行定期存款利率來進行計算。
(三)系數的計算過程和結果
首先打開「大智慧新一代」股票分析軟體,得到相應的季度K線圖,並分別查詢魯西化工(000830),首鋼股份(000959),宏業股份(600128)和吉林敖東(000623)的收盤價。打開Excel軟體,將股票收盤價數據粘貼到Excel中,根據公式:月收益率=[(本月收盤價-上月收盤價)/上月收盤價]×100%,就可以計算出股票的月收益率,用同樣的方法可以計算出大盤收益率。將股票收益率和市場收益率放在同一張Excel中,這樣在Excel表格中我們得到兩列數據:一列為個股收益率,另一列為大盤收益率。選中某一個空白的單元格,用Excel的「函數」-「統計」-「Slope()函數」功能,計算出四支股票的β系數。
下面列示數據說明:
魯西化工000830 首鋼股份000959 弘業股份600128 吉林敖東000623 上證 市場收益率 市場超額收益率 市場無風險收益率
統計時間 收盤價 收益率 超額 收盤價 收益率 超額 收盤價 收益率 超額 收盤價 收益率 超額 指數
收益率 收益率 收益率 收益率
05年4月 4.51 基期 3.77 基期 3.29 基期 4.69 基期 1159.14
05年5月 3.81 -6.23% -8.65% 3.68 7.54% 5.12% 3.48 4.53% 2.11% 7.02 -7.77% -10.19% 1060.73 -2.56% -4.98% 2.42%
05年6月 3.98 8.33% 5.91% 3.35 -18.39% -20.81% 3.3 4.39% 1.97% 8.49 15.07% 12.65% 1080.93 8.03% 5.61% 2.42%
05年7月 4.76 -9.07% -11.49% 3.12 -13.10% -15.52% 3.02 -30.67% -33.09% 9.96 -11.30% -13.72% 1083.03 -8.72% -11.14% 2.42%
05年8月 3.33 -19.28% -21.70% 3.57 -12.97% -15.39% 4.11 -16.93% -19.35% 8.17 -0.87% -3.29% 1162.79 -14.16% -16.58% 2.42%
05年9月 3.45 -2.71% -5.03% 3.35 8.19% 5.87% 3.73 13.08% 10.76% 9.86 36.64% 34.32% 1155.61 11.26% 8.94% 2.32%
05年10月 3.32 -7.62% -9.94% 3.15 -10.33% -12.65% 3.51 4.66% 2.34% 8.17 27.03% 24.71% 1092.81 -1.63% -3.95% 2.32%
05年11月 3.46 -15.45% -17.77% 2.41 -9.21% -11.53% 3.38 -18.34% -20.66% 9.86 -1.68% -4.00% 1099.26 -8.00% -10.32% 2.32%
05年12月 3.48 3.41% 1.09% 2.46 -8.88% -11.20% 3.39 10.49% 8.17% 16.55 17.79% 15.47% 1161.05 9.50% 7.18% 2.32%
06年1月 3.6 45.66% 43.14% 2.75 23.67% 21.15% 3.86 3.13% 0.61% 19.25 8.28% 5.76% 1258.04 16.34% 13.82% 2.52%
06年2月 4.67 -57.66% -60.18% 2.79 -12.57% -15.09% 3.75 -19.06% -21.58% 21.73 -42.86% -45.38% 1299.03 -19.66% -22.18% 2.52%
06年3月 4.57 9.47% 6.95% 3.05 0.43% -2.09% 2.95 -3.41% -5.93% 24.51 -8.22% -10.74% 1298.29 -0.18% -2.70% 2.52%
06年4月 2.65 -5.54% -8.06% 2.96 -7.26% -9.78% 3.28 -17.55% -20.07% 50.00 -39.26% -41.78% 1440.22 -9.32% -11.84% 2.52%
06年5月 3.22 -0.23% -3.60% 2.8 -13.13% -16.50% 3.81 -1.14% -4.51% 65.34 -9.05% -12.42% 1641.3 -6.73% -10.10% 3.37%
06年6月 3.37 -21.41% -24.78% 2.84 -5.57% -8.94% 3.69 10.55% 7.18% 49.75 -0.46% -3.83% 1672.21 -8.49% -11.86% 3.37%
06年7月 3.48 21.26% 17.89% 2.91 4.21% 0.84% 4.48 8.50% 5.13% 62.3 20.00% 16.63% 1612.73 6.91% 3.54% 3.37%
06年8月 3.37 3.70% 0.33% 2.97 -8.36% -11.73% 4.78 17.47% 14.10% 74.1 -35.85% -39.22% 1658.63 0.47% -2.90% 3.37%
06年9月 3.27 14.29% 11.15% 3.13 -17.94% -21.08% 4.73 11.38% 8.24% 7.01 5.44% 2.30% 1752.42 11.82% 8.68% 3.14%
06年10月 3.17 67.50% 64.36% 3.41 10.75% 7.61% 4.39 -18.97% -22.11% 91.28 67.91% 64.77% 1837.99 28.80% 25.66% 3.14%
06年11月 3.12 -32.71% -35.85% 4.35 -4.21% -7.35% 4.2 58.86% 55.72% 60.02 -11.09% -14.23% 2099.29 4.80% 1.66% 3.14%
06年12月 3.16 24.21% 21.07% 5.01 22.30% 19.16% 4.43 52.43% 49.29% 68.28 56.81% 53.67% 2675.47 52.67% 49.53% 3.14%
魯西化工(000830)的β系數=0.89
首鋼股份(000959)的β系數=1.01
弘業股份(600128)的β系數=0.78
吉林敖東(000623)的β系數=1.59
(三)結論
計算出來的β值表示證券的收益隨市場收益率變動而變動的程度,從而說明它的風險度,證券的β值越大,它的系統風險越大。β值大於0時,證券的收益率變化與市場同向,即以極大可能性,證券的收益率與市場同漲同跌。當β值小於0時,證券收益率變化與市場反向,即以極大可能性,在市場指數上漲時,該證券反而下跌;而在市場指數下跌時,反而上漲。(在實際市場中反向運動的證券並不多見)
根據上面對四隻股票β值的計算分析說明:首鋼股份和吉林敖東的投資風險大於市場全部股票的平均風險;而魯西化工和宏業股份的投資風險小於市場全部股票的平均風險。那我們在具體的股票投資過程中就可以利用不同股票不同的β值進行投資的決策,一般來說,在牛市行情中或者短線交易中我們應該買入β系數較大的股票,而在震盪市場中或中長線投資中我們可以選取β值較小的股票進行風險的防禦。
❼ 資產組合的預期收益率、方差和標准差是如何衡量和計算的
任何投資者都希望投資獲得最大的回報,但是較大的回報伴隨著較大的風險。為了分散風險或減少風險,投資者投資資產組合。資產組合是使用不同的證券和其他資產構成的資產集合,目的是在適當的風險水平下通過多樣化獲得最大的預期回報,或者獲得一定的預期回報使用風險最小。 作為風險測度的方差是回報相對於它的預期回報的離散程度。資產組合的方差不僅和其組成證券的方差有關,同時還有組成證券之間的相關程度有關。為了說明這一點,必須假定投資收益服從聯合正態分布(即資產組合內的所有資產都服從獨立正態分布,它們間的協方差服從正態概率定律),投資者可以通過選擇最佳的均值和方差組合實現期望效用最大化。如果投資收益服從正態分布,則均值和方差與收益和風險一一對應。 如本題所示,兩個資產的預期收益率和風險根據前面所述均值和方差的公式可以計算如下: 1。股票基金 預期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11% 方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05% 標准差=14.3%(標准差為方差的開根,標准差的平方是方差) 2。債券基金 預期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7% 方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67% 標准差=8.2% 注意到,股票基金的預期收益率和風險均高於債券基金。然後我們來看股票基金和債券基金各佔百分之五十的投資組合如何平衡風險和收益。投資組合的預期收益率和方差也可根據以上方法算出,先算出投資組合在三種經濟狀態下的預期收益率,如下: 蕭條:50%*(-7%)+50%*17%=5% 正常:50%*(12%)+50%*7%=9.5% 繁榮:50%*(28%)+50%*(-3%)=12.5% 則該投資組合的預期收益率為:1/3*5%+1/3*9.5%+1/3*12.5%=9% 該投資組合的方差為:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001% 該投資組合的標准差為:3.08% 注意到,其中由於分散投資帶來的風險的降低。一個權重平均的組合(股票和債券各佔百分之五十)的風險比單獨的股票或債券的風險都要低。 投資組合的風險主要是由資產之間的相互關系的協方差決定的,這是投資組合能夠降低風險的主要原因。相關系數決定了兩種資產的關系。相關性越低,越有可能降低風險。
❽ 債券投資組合收益率的衡量有哪些
加權平均投資組合收益率是對投資組合中所有債券的收益率按所佔比重作為權重進行加權平均後得到的收益率,是計算投資組合收益率最通用的方法。
❾ 投資組合的預期收益及風險計算(需大俠詳解)
第1問的預期收益率和標准差太簡單了吧?你自己後面括弧裡面已經給出計算過程了。至於收益率,題目給了,國庫券4%,指數12.5%。
第2問不清楚你的書里的投資效用函數是哪個,估計應該是U=R-0.5Aσ^2這個吧?
那就把第1問的結果代進去一個個算好了。至於發現,不用算也知道大概:全部投資指數效用最大。
第3問剛好相反,全部投資國庫券效用最大。