導航:首頁 > 基金投資 > 量化投資策略開發實例

量化投資策略開發實例

發布時間:2021-04-23 07:55:13

1. 量化交易主要有什麼經典的策略

您好
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。

2. 什麼是量化投資交易策略

一文看懂量化投資策略

閑話基

量化投資在近些年受到越來越多的關注,包括規模、策略、業績。量化投資,是指通過藉助統計學、數學方法,運用計算機從海量歷史數據中,尋找能夠帶來超額收益的多種「大概率」策略,按照策略構建的數量模型嚴格執行投資,力求獲得長期穩定可持續高於平均的超額回報。

跨市場策略涉及外匯兌換、國際期貨交易對沖,交易實現難度大,國內用得少。

由於期貨具有杠桿屬性,這類策略持倉的市值往往很大,有時候甚至超過產品資產總值,導致收益率的波動率是所有量化策略中最大的。在市場出現連續震盪行情時,這樣策略由於杠桿屬性會出現較大的回撤。另外一個對這類策略的一個限制是,目前市場上活躍交易的期貨品種不多,高頻交易很大程度倚重於品種成交量,開平倉時間間隔較短,使得策略容量不大。

3. 如何開發量化投資模型

4.如何進行量化投資
一個量化投資的交易系統主要包括三個部分,阿爾法模型、風險模型和交易成本模型。
阿爾法模型旨在預測寬客所考慮金融產品的未來趨勢;
風險模型旨在幫助寬客投資不太能帶來收益但會造成損失的敞口規模;
交易成本模型用於幫助確定從目前的投資組合到新的投資組合的交易成本。
目前對於量化交易的研究重點大都集中在對阿爾法模型的研究上。
阿爾法模型
阿爾法模型是量化交易系統的第一個重要組成部分,主要是為了尋找盈利機會。
阿爾法是希臘字母α的音譯,常用於量化表述投資者的盈利能力或投資者得到的與市場波動無關的回報。
阿爾法模型分為:
趨勢形、回復型、技術情緒型、價值型/收益型、成長型和品質型
趨勢型和均值回復型交易策略都依賴價格數據;純技術情緒型的策略比較少見通常都只作為一個輔助因子;而價值型/收益型、成長型和品質型策略都基於基本面數據
趨勢跟隨策略
趨勢跟隨策略是基於以下基本的假定:在一定時間內市場通常朝著同一方向變化,據此對市場趨勢做出判斷就可以作為制定交易策略的依據。常見於期貨市場,最常用移動平均線交叉來定義趨勢。
均值回復策略
均值回復策略的基本理論認為,價格圍繞其價值中樞而上下波動,判斷出這個中樞以及波動的方向便足以捕捉到交易機會。統計套利是用的最多的均值回復策略,認為價格出現背離類似股票的價值終究會縮小到合理的區間范圍。
技術情緒型策略
這一類策略沒有明確的經濟理論支撐,主要通過追蹤投資者情緒相關指標來判斷預期回報,如交易價格、交易量以及波動性指標等。比如觀察期權市場的認沽認購量和隱含波動率做現貨的擇時,再者就是高頻交易通過限價指令簿的形態來判斷近期市場情緒。
價值型/收益型策略
價值型策略主要用於股票交易。這類策略認為市場傾向於高估高風險資產的風險,而低估低風險資產的風險。因此,在適當的時間買入高風險資產和賣出低風險資產,就可以獲得收益。常用的指標有PE(市盈率)、PB(市凈率)等,常應用於股票多空。
成長型策略
成長型策略試圖通過對所考慮資產以往的增長水平進而對未來的走勢進行預測。他認為價格上漲通常都是存在趨勢的,價格上漲最快的產品通常比同類產品更具有優勢,他要求投資者能盡早判斷公司的股價處於增長期,從而捕捉到公司的股價未來更大的上漲幅度。宏觀上常見於外匯市場,例如持有經濟迅速增長的國家的外匯,這些國家的利率比經濟增長緩慢或處於復甦期的經濟體要高;股票市場通常用EPS等指標度量。
品質型策略
這類策略的支持者認為,在其他條件相同的條件下最好買入或持有高品質的產品而做空或減少持有低品質的資產。這類策略比較看重資金的安全,受宏觀市場影響比較大,常用的指標有杠桿比率、收入波動比、管理團隊水平和欺詐風險。
不管是什麼類型的策略最終受益都體現在交易中關於買賣時機的把握和持有頭寸選擇的技巧。
https://uqer.io/community/list 這個社區裡面有很多關於量化的策略,也有很多牛人,可以和他們多討論討論的。

4. 什麼是量化投資

你好,量化投資,簡單地說就是利用數學、統計學、信息技術的量化投資方法來管理投資組合。

5. 如何構建量化投資策略

,第一層級是包含所有中國對沖基金的綜合指數,第二層級為四個分策略指數,包括相對價值策略、趨勢性策略、事件驅動策略和多策略指數,第三層級為第二層級的子策略,目前包括權益類套利、股票市場中性策略指數(相對價值策略)、CTA、股票動態對沖、宏觀對沖等子策略指數。

6. 量化投資用什麼編程語言研發策略好呢

么以下我就以程序語言的角度來回答
當然如果已經會了某些語言,那你可以使用熟悉的語言去找版網上的學習資源權會比較快
如果沒有特別熟悉的語言,或者是願意多學一種非常好用的語言
我的建議是學習Python

我從以下幾點來分別說明

平台資源

國內外使用Python做雲端回測以及運算的免費平台相當的多,例如有 寬客在線,發明者量化,優礦, 等等不勝枚舉,可以使用平台的支持以及社區的互相幫助來學習

容易學習

綜合以上所說,"目前的環境底下" 我推薦Python.(推薦直接下載 Anaconda的集成開發環境)

7. 量化投資策略到底什麼是量化投資

  1. 量化投資策略就是利用量化的方法,進行金融市場的分析、判斷和交易的策略版、演算法的總稱權。

  2. 量化投資策略類型包括:

    (1) 趨勢判斷型量化投資策略,判斷趨勢型是一種高風險的投資方式,通過對大盤或者個股的趨勢判斷,進行相應的投資操作。如果判斷是趨勢向上則做多,如果判斷趨勢向下則做空,如果判斷趨勢盤整,則進行高拋低吸。這種方式的優點是收益率高,缺點是風險大。一旦判斷錯誤則可能遭受重大損失。所以趨勢型投資方法適合於風險承受度比較高的投資者,在承擔大風險的情況下,也會有機會獲得高額收益。

    (2) 波動率判斷型量化投資策略,判斷波動率型投資方法,本質上是試圖消除系統性風險,賺取穩健的收益。這種方法的主要投資方式是套利,即對一個或者N個品種,進行買入同時並賣出另外一個或N個品種的操作,這也叫做對沖交易。這種方法無論在大盤哪個方向波動,向上也好,向下也好,都可以獲得一個比較穩定的收益。在牛市中,這種方法收益率不會超越基準,但是在熊市中,它可以避免大的損失,還能有一些不錯的收益。

8. 國內股票的量化投資策略有哪些,特別是基本面量化

檸檬給你來問題解決的暢快源感覺!主要的量化對沖策略有:1、市場中性策略 主要追求的是通過各類對沖手段消除投資組合的大部分或全部系統風險,尋找市場中的相近資產的定價偏差,利用價值回歸理性的時間差,在市場中賺取細小的差價來獲得持續的收益。2、事件驅動套利策略 利用特殊事件造成的對資產價格的錯誤定價,從錯誤定價中謀利。3、相對價值策略 主要是利用證券資產間相對的價值偏差進行獲利。感覺暢快?別忘了點擊採納哦!

9. 量化交易主要有哪些經典的策略

這是別人總結的,我也是復制他人的請參考一下吧!
量邦科技資深人士總結:
(1)股票版、基本面、新聞消息權之間的關系不停變化

記得2009年美股到達低點的時候,很多「低質」公司的回報大大高於「優質」公司的回報。很多3塊錢的「垃圾股」可以在很短時間內漲到10塊錢,而高價的優質公司的股票想要翻一倍都要花上很久很久。而在另一段時間跨度或者另一個市場里,可能又是另一番情景。所以跨市場、長期有效的量化交易系統極少甚至可以說沒有。

(2)有些關鍵信息並不容易量化

微博是市場突發消息和傳聞的最大出處,所有投資者都不會無視這里傳出的訊息。但是這里的消息格式往往不規范,語法也千奇百怪,你無法讓計算機程序挑選出有效信息並運用於自動交易中。

(3)過去並不代表未來

多數時候,通過歷史數據測試可以證明的你的設計交易策略在過去的表現,這是量化交易世界中非常重要的一塊內容。不過並不是所有人都能意識到,過去不代表未來。這意味著一些交易策略在過去表現的很好,但是在未來可能會帶來巨大的虧損。

10. 量化交易都有哪些主要的策略模型

研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。

量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。 量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。

閱讀全文

與量化投資策略開發實例相關的資料

熱點內容
融資對象分 瀏覽:728
凱裕金銀貴金屬 瀏覽:394
展博投資管理 瀏覽:980
壹理財下載 瀏覽:144
貴金屬看盤技術 瀏覽:930
外匯ea三角套利 瀏覽:389
寶盈轉型動力基金今日凈值查詢 瀏覽:311
abl外匯軟體 瀏覽:817
天使投資移動互聯網 瀏覽:315
中翌貴金屬老是系統維護 瀏覽:225
歷史期貨松綁 瀏覽:23
信託借款平台 瀏覽:214
吉林紙業股票 瀏覽:324
貴金屬元素分析儀 瀏覽:30
融資打爆倉 瀏覽:645
分級基金A還能玩嗎 瀏覽:289
網路貸款平台大全 瀏覽:358
13月房地產到位資金 瀏覽:744
姚江濤中航信託 瀏覽:518
coding融資 瀏覽:357