量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
1·量化選股
量化選股就是採用數量的方法判斷某個公司是否值得買入的行為。根據某個方法,如果該公司滿足了該方法的條件,則放入股票池,如果不滿足,則從股票池中剔除。量化選股的方法有很多種,總的來說,可以分為公司估值法、趨勢法和資金法三大類
2·量化擇時
股市的可預測性問題與有效市場假說密切相關。如果有效市場理論或有效市場假說成立,股票價格充分反映了所有相關的信息,價格變化服從隨機遊走,股票價格的預測則毫無意義。眾多的研究發現我國股市的指數收益中,存在經典線性相關之外的非線性相關,從而拒絕了隨機遊走的假設,指出股價的波動不是完全隨機的,它貌似隨機、雜亂,但在其復雜表面的背後,卻隱藏著確定性的機制,因此存在可預測成分。
3·股指期貨套利
股指期貨套利是指利用股指期貨市場存在的不合理價格,同時參與股指期貨與股票現貨市場交易,或者同時進行不同期限,不同(但相近)類別股票指數合約交易,以賺取差價的行為,股指期貨套利主要分為期現套利和跨期套利兩種。股指期貨套利的研究主要包括現貨構建、套利定價、保證金管理、沖擊成本、成分股調整等內容。
4·商品期貨套利
商品期貨套利盈利的邏輯原理是基於以下幾個方面 :(1)相關商品在不同地點、不同時間對應都有一個合理的價格差價。(2)由於價格的波動性,價格差價經常出現不合理。(3)不合理必然要回到合理。(4)不合理回到合理的這部分價格區間就是盈利區間。
5·統計套利
有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。統計套利在方法上可以分為兩類,一類是利用股票的收益率序列建模,目標是在組合的β值等於零的前提下實現alpha 收益,我們稱之為β中性策略;另一類是利用股票的價格序列的協整關系建模,我們稱之為協整策略。
6·期權套利
期權套利交易是指同時買進賣出同一相關期貨但不同敲定價格或不同到期月份的看漲或看跌期權合約,希望在日後對沖交易部位或履約時獲利的交易。期權套利的交易策略和方式多種多樣,是多種相關期權交易的組合,具體包括:水平套利、垂直套利、轉換套利、反向轉換套利、跨式套利、蝶式套利、飛鷹式套利等。
7·演算法交易
演算法交易又被稱為自動交易、黑盒交易或者機器交易,它指的是通過使用計算機程序來發出交易指令。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格、甚至可以包括最後需要成交的證券數量。根據各個演算法交易中演算法的主動程度不同,可以把不同演算法交易分為被動型演算法交易、主動型演算法交易、綜合型演算法交易三大類。
8·資產配置
資產配置是指資產類別選擇,投資組合中各類資產的適當配置以及對這些混合資產進行實時管理。量化投資管理將傳統投資組合理論與量化分析技術的結合,極大地豐富了資產配置的內涵,形成了現代資產配置理論的基本框架。它突破了傳統積極型投資和指數型投資的局限,將投資方法建立在對各種資產類股票公開數據的統計分析上,通過比較不同資產類的統計特徵,建立數學模型,進而確定組合資產的配置目標和分配比例。
2. 什麼是量化投資交易策略
一文看懂量化投資策略
閑話基
量化投資在近些年受到越來越多的關注,包括規模、策略、業績。量化投資,是指通過藉助統計學、數學方法,運用計算機從海量歷史數據中,尋找能夠帶來超額收益的多種「大概率」策略,按照策略構建的數量模型嚴格執行投資,力求獲得長期穩定可持續高於平均的超額回報。
跨市場策略涉及外匯兌換、國際期貨交易對沖,交易實現難度大,國內用得少。
由於期貨具有杠桿屬性,這類策略持倉的市值往往很大,有時候甚至超過產品資產總值,導致收益率的波動率是所有量化策略中最大的。在市場出現連續震盪行情時,這樣策略由於杠桿屬性會出現較大的回撤。另外一個對這類策略的一個限制是,目前市場上活躍交易的期貨品種不多,高頻交易很大程度倚重於品種成交量,開平倉時間間隔較短,使得策略容量不大。
3. 求量化投資-策略與技術的電子書(丁鵬著)
首席投資官丁鵬
4. 量化交易都有哪些主要的策略模型
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。 量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
5. 量化投資—策略與技術的本書特色
第一,實戰性。書中的案例絕大多數來自於實際的市場數據,只有很少一部分是純理論的分析。尤其是策略篇中的內容大部分來自於專業投資機構的研究報告,具有極強的實戰價值。
第二,基於中國市場。與量化投資最接近的書籍當屬「金融工程」,但金融工程中絕大多數的案例都來自於國外市場,很多策略在國內市場還不具備投資條件。本書中的案例基本上都是對國內市場(股票、期貨等)中的實際交易數據的分析,特別適合國內的投資者。
第三,理論性。量化投資離不開最新的數學和計算機理論的支持,本書用了將近一半的篇幅來闡述與量化投資有關的基礎理論,並用了很多案例來說明這些理論的應用方法。避免了一般投資策略書籍重技術而忽視理論的缺點,從而使量化投資更加科學化。
本書主要內容
本書的內容分為:策略篇和理論篇。策略篇中闡述了各種量化投資的策略與方法,理論篇則詳細介紹了支持量化投資的各種數學工具。
策略篇一共介紹了8個方面的投資策略,分別是量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、期權套利、演算法交易及其他策略。
投資策略 概述
量化選股 量化投資最重要的策略,主要是研究如何利用各種方法選出最佳的股票組合,使得該股票組合的收益率盡可能高的同時,保持盡可能的穩定性。量化選股一章闡述了8種不同角度的策略,分別為多因子模型、風格輪動模型、行業輪動模型、資金流模型、動量反轉模型、一致預期模型、趨勢追蹤模型和籌碼選股模型
量化擇時 量化投資中最難的,也是收益率最高的一種策略,主要研究大盤及個股走勢,並進行相應的高拋低吸操作。如果能夠正確判斷大盤,則收益率會比單純的買入-持有策略收益要高很多。這一章主要闡述了8種擇時模型,分別是趨勢擇時、市場情緒擇時、有效資金模型、牛熊線模型、Hurst指數模型、SVM模型、SWARCH模型和異常指標擇時
6. 股票量化交易策略是什麼意思
股市是一門經濟學,哲學,概率學,心理學的綜合體,想要成功,回需要不斷去感答悟去總結每一次的失敗,這樣才能走的更好更遠。
第一個理念:
順勢而為
股市的大趨勢決定個股的走勢,當指數大漲時個股更容易爆發,這個時候適合重倉介入,當然要注意獲利就出;當市場處於弱勢時,就要考慮輕倉介入,不盲目追漲。
第二個理念:
選定有價值的公司
在投資中,選定有價值的公司很重要,因為這些公司有很強的上漲潛力,一旦市場有好的信號,或者公司有大利好時,股價就會飛速上漲,所以這樣的公司更容易讓普通股民賺到錢。
第三個理念:
分批建倉 堅持到底
在投資中,投資者要住的是要做好投資策略,一般的策略就是分批建倉,在市場下跌時以倒金字塔形態建倉,在市場上漲時,以金字塔形態減倉。如果股票短期被套,市場情況還可以的話,則要選擇堅持持倉。
天字一號量化交易系統通過設定不同的各種指標條件,一旦市場交易情況滿足這些條件時就自動彈出一些操作指示;設定值達到開倉條件,系統會彈出買入信號、設定值達到減倉條件賣出一半或者全部賣出等。
7. 量化投資策略與技術修訂版有什麼不同
量化投資策略就是利用量化的方法,進行金融市場的分析、判斷和交易的策略、演算法的總版稱。
量化投權資策略類型包括:
(1) 趨勢判斷型量化投資策略,判斷趨勢型是一種高風險的投資方式,通過對大盤或者個股的趨勢判斷,進行相應的投資操作。如果判斷是趨勢向上則做多,如果判斷趨勢向下則做空,如果判斷趨勢盤整,則進行高拋低吸。這種方式的優點是收益率高,缺點是風險大。一旦判斷錯誤則可能遭受重大損失。所以趨勢型投資方法適合於風險承受度比較高的投資者,在承擔大風險的情況下,也會有機會獲得高額收益。
(2) 波動率判斷型量化投資策略,判斷波動率型投資方法,本質上是試圖消除系統性風險,賺取穩健的收益。這種方法的主要投資方式是套利,即對一個或者N個品種,進行買入同時並賣出另外一個或N個品種的操作,這也叫做對沖交易。這種方法無論在大盤哪個方向波動,向上也好,向下也好,都可以獲得一個比較穩定的收益。在牛市中,這種方法收益率不會超越基準,但是在熊市中,它可以避免大的損失,還能有一些不錯的收益。
8. 什麼是量化投資怎麼理解量化
私募排排網為您解答:
量化投資,簡單說就是利用計算機技術和數學模型去實現投回資策略的答過程。根據上面的定義,理解它的話,咱們只要記住3個關鍵詞:
數學模型:需要數學公式或模型進行計算;
計算機技術:用計算機來進行自動化交易;
投資策略:將這種方法形成一種慣用投資策略。
9. 什麼是α,β收益,量化投資的策略創建與分析
α收益:一攬子可以自定義低估、同質化並且有波動的股票,不斷買入更便宜的,賣出更貴的,從而獲得的收益。
例如:幾個跟著滬深300的ETF,你發現手中持有的滬深300ETF溢價2%了,而市場上同時存在一個折價1%的ETF,那麼就賣出溢價高的滬深300ETF,去買折價的,這樣雖然始終持有滬深300ETF,但獲得了超越滬深300指數本身的收益,就是α收益。
解釋一下同質化:明顯所有的滬深300ETF是同質化的,也可以認為最小市值20個股票是同質化的,所有銀行股是同質化的,分級A是同質化的。下文中有解釋自定義低估。
β收益:基本面本身上漲是β收益。
例如,自定義最小市值的10個股票為一個指數,這些最小市值從5億漲到20億,這就是β收益。自定義最低股價10個為一個指數,從牛市的5元跌到2元,那麼β收益就是負的
量化策略創建三個步驟:
策略的理論基礎
歷史回測
找到策略黑天鵝。
基本面理論
按基本面又可以分為:1.價值型;2.成長型;3.品質型;按中國特色A股基本面又可以添加;4.小市值型;5.股價型
技術面理論
按技術面又可以分為:1.趨勢型,2.趨勢反轉型,3.縮量反彈,4.指數輪動,5.擇時
風險套利
風險套利(或者稱輪動):不斷買入更便宜的,賣出更貴的。
注意:
有些理論基礎並不牢固,並且不能很好解釋(這也導致了各種投資流派互相不服)
有些量化跳過了理論基礎,直接根據歷史統計進行量化(本文不討論),例如,統計兩會前後漲跌,一季度歷史表現最好板塊
對策略理論的解釋:
基本面策略可以定義什麼是低估,比如低PE是低估,低市值是低估,低股價是低估,高ROE是低估,高成長是低估;也可以自定義低估,PB*PE是低估,總市值*流通市值小是低估
基本面理論提供了一攬子同質化並且有波動的股票。有些基本面策略的股票間波動較小,例如最低PE股,一段時期內總是那麼幾個銀行股;有些波動較大,比如小市值型
技術面理論有些很難定義什麼是低估,比如趨勢型;有些則看似可以定義低估,例如,BIAS最小,20日跌幅最大,其實也不是
能自定義低估的策略是風險套利,不能自定義低估的策略是統計
基本面本身能上漲,就獲得了β收益
我得出的結論是:風險套利策略的核心是對自定義低估的輪動,即不斷獲得α收益!!
如何獲得α收益:大部分基本面策略的收益是因為風險套利獲得的;也就是不斷買入更低估的,賣出更貴的;也就是因為調倉周期內因不同股票的波動而產生收益,因此適當縮短周期有利於提高收益;所以在一年內交易次數越多,alpha收益越大(投資大師說的減少交易次數,並不適用於套利)
理論本身獲得的β收益並不多,甚至為負(價值型由於近幾年市場估值不斷降低,不調倉的話,收益是負的)
我們應當尋找的是:基本面理論本身能上漲,且能提供同質化,波動較大的策略(即獲得α,又獲得β)
統計策略其內在邏輯說服力小,是過去的概率來預測未來
歷史回測中要用到一個哲學思想,叫做奧卡姆剃刀:較簡單的理論比復雜的理論更好,因為它們更加可檢驗
改變測試起始時間。調倉周期超過2天的策略,應該試遍每個起始時間,取平均收益,這才最接近策略真實歷史回測,因為理論上起始時間變化一兩天對策略收益影響是不大的,如果變化很大就說明過度優化。
不要創建靜態股票池。歷史上每個階段都有大牛股,完全可以收集大牛股作為股票池,算好調倉周期,每個階段買最牛的,收益可以美到不敢想像
不要用PE.PB等指標精確逃頂抄底,最多用來確定一個大致范圍。每次大頂點位都是不同的,這樣的擇時毫無意義。
先用25個以上股票測試,確定策略有效性,再減少數量做策略,如果25個測試無效,那麼一兩個即使收益很好,也該放棄。
改變條件權重。如果稍微改變權重,收益變化很大,那麼就降低策略未來預期收益,別指望策略以後會表現這么好。
盡量從07年開始測試。除非你能確定每個時間市場的風格,顯然這是不可能的。
同一套擇時系統,如果用在策略1上回撤是30%,用在策略2上回撤是15%,你肯定會選擇策略2,如果策略1和2本質上是差不多的策略,別太高興,在未來,策略1和2表現誰好誰壞也是難說的
價值型,成長型,品質型策略,黑天鵝是過一個季度,可能財務數據完全變了,因此持倉個數不能太少,行業要分開
小市值,低價,低交易額策略,黑天鵝是出現仙股
統計類,技術類策略,黑天鵝是理論本身就不完美